
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

II B.Tech I Semester

Subject Name: APPLICATIONS OF ARTIFICIAL INTELLIGENCE LAB
Subject Code: C6602
Regulations: MR-22

Lab Manual

Academic Year: 2024-25

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)
MAIN CAMPUS

(An UGC Autonomous Institution, Approved by AICTE and Affiliated to JNTUH,
Hyderabad, Accredited by NAAC with ‘A++’ Grade (III Cycle))

NBA Accredited Programmes – UG (CE, EEE, ME, ECE, & CSE), PG (CE-SE, EEE, EPS, ME-TE)

Maisammaguda(H), Gundlapochampally Village, Medchal Mandal,
Medchal-Malkajgiri District, Telangana State – 500100

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

MR22 – ACADEMIC REGULATIONS (CBCS)

for B.Tech. (REGULAR) DEGREE PROGRAMME

Applicable for the students of B.Tech. (Regular) programme admitted from the Academic

Year 2022-23 onwards

The B.Tech. Degree of Jawaharlal Nehru Technological University Hyderabad, Hyderabad

shall be conferred on candidates who are admitted to the programme and who fulfill all the

requirements for the award of the Degree.

VISION OF THE INSTITUTE

To be a premier center of professional education and research, offering quality programs in
a socio-economic and ethical ambience.

MISSION OF THE INSTITUTE

• To impart knowledge of advanced technologies using state-of-the-art infrastructural
facilities.

• To inculcate innovation and best practices in education, training and research.

• To meet changing socio-economic needs in an ethical ambience.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING –
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

DEPARTMENT VISION

To attain global standards in Computer Science and Engineering education, training and
research to meet the growing needs of the industry with socio-economic and ethical
considerations.

DEPARTMENT MISSION

• To impart quality education and research to undergraduate and postgraduate students
in Computer Science and Engineering.

• To encourage innovation and best practices in Computer Science and Engineering
utilizing state-of-the-art facilities.

• To develop entrepreneurial spirit and knowledge of emerging technologies based on
ethical values and social relevance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates will demonstrate technical skills, competency in AI & ML and exhibit team
management capability with proper communication in a job environment

PEO2: Graduates will function in their profession with social awareness and responsibility

PEO3: Graduates will interact with their peers in other disciplines in industry and society
and contribute to the economic growth of the country

PEO4: Graduates will be successful in pursuing higher studies in engineering or
management

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop intelligent automated systems applying mathematical, analytical,
programming and operational skills to solve real world problems

PSO2: Apply machine learning techniques, software tools to conduct experiments, interpret
data and to solve complex problems

PSO3: Implement engineering solutions for the benefit of society by the use of AI and ML

BLOOM’S TAXONOMY (BT) TRIANGLE & BLOOM’S ACTION VERBS

BLOOM’S ACTION VERBS

2022-23
Onwards
(MR-22)

MALLA REDDY ENGINEERING COLLEGE
(AUTONOMOUS)

B.Tech.
VI Semester

Code: C6602 APPLICATIONS OF
ARTIFICIAL INTELLIGENCE LAB

L T P

Credits: 1.5 - - 3

List of Experiments:

1. Write a program to conduct uninformed search.

2. Write a program to conduct informed search.

3. Write a program to conduct game search.

4. Write a program to construct a Bayesian network from given data.

5. Write a program to infer from the Bayesian network.

6. Write a program to illustrate Hidden Markov Model.

7. Write a program to run value and policy iteration in a grid world.

8. Write a program to do reinforcement learning in a grid world.

9. Write a program to implement adaptive dynamic programming.

10. Write a program to implement active dynamic programming.

11. Write a program to implement Q learning.

12. Case Study

CO- PO, PSO Mapping

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COs
Programme Outcomes (POs) PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 2 3 1 2 1

CO2 2 2 2 2

CO3 1 2 1 1

8

1. Write a program to conduct uninformed search.

 DFS(depth first search)

 from collections import defaultdict

class Graph:

 # Constructor

 def __init__(self):

 # Default dictionary to store the graph

 self.graph = defaultdict(list)

 # Function to add an edge to the graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # A function used by DFS

 def DFSUtil(self, v, visited):

 # Mark the current node as visited and print it

 visited.add(v)

 print(v, end=' ')

 # Recur for all the vertices adjacent to this vertex

 for neighbour in self.graph[v]:

 if neighbour not in visited:

 self.DFSUtil(neighbour, visited)

 # The function to do DFS traversal. It uses recursive DFSUtil()

 def DFS(self, v):

 # Create a set to store visited vertices

 visited = set()

 # Call the recursive helper function to print DFS traversal

 self. DFSUtil(v, visited)

Driver code

Create a graph given in the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is DFS from (starting from vertex 2):")

g.DFS(2)

9

Output:

#Breadth first search

from collections import defaultdict

class Graph:

 # Constructor

 def __init__(self):

 # Default dictionary to store the graph

 self.graph = defaultdict(list)

 # Function to add an edge to the graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # Function to print a BFS of the graph

 def BFS(self, s):

 # Mark all the vertices as not visited

 visited = [False] * (max(self.graph) + 1)

 # Create a queue for BFS

 queue = []

 # Mark the source node as visited and enqueue it

 queue.append(s)

 visited[s] = True

 while queue:

 # Dequeue a vertex from the queue and print it

 s = queue.pop(0)

 print(s, end=" ")

 # Get all adjacent vertices of the dequeued vertex s.

 # If an adjacent has not been visited, then mark it visited and enqueue it

 for i in self.graph[s]:

 if not visited[i]:

 queue.append(i)

 visited[i] = True

10

Driver code

Create a graph given in the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is Breadth-First Traversal (starting from vertex 2):")

g.BFS(2)

Output:

2.program to conduct informed search.

#BestFirstSearch

from queue import PriorityQueue

v = 14

graph = [[] for _ in range(v)]

Function for Implementing Best-First Search

Gives output path having the lowest cost

def best_first_search(source, target, n):

 visited = [0] * n

 visited[source] = True

 pq = PriorityQueue()

 pq.put((0, source))

11

 while not pq.empty():

 u = pq.get()[1]

 # Displaying the path having the lowest cost

 print(u, end="")

 if u == target:

 break

 for v, c in graph[u]:

 if not visited[v]:

 visited[v] = True

 pq.put((c, v))

 print()

Function for adding edges to graph

def add_edge(x, y, cost):

 graph[x].append((y, cost))

 graph[y].append((x, cost))

The nodes shown in the above example (by alphabets) are implemented using integers

add_edge(0, 1, 3)

add_edge(0, 2, 6)

add_edge(0, 3, 5)

add_edge(1, 4, 9)

add_edge(1, 5, 8)

add_edge(2, 6, 12)

add_edge(2, 7, 14)

add_edge(3, 8, 7)

12

add_edge(8, 9, 5)

add_edge(8, 10, 6)

add_edge(9, 11, 1)

add_edge(9, 12, 10)

add_edge(9, 13, 2)

source = 0

target = 9

best_first_search(source, target, v)

Output:

013289

3.program to conduct gamesearch

Tic-Tac-Toe Program

importing all necessary

librariesimport numpy as np

13

Import random

From time import sleep

Creates an empty

boarddefcreate_board():

return(np.array([[0,0,0],

[0, 0,0],

[0,0,0]]))

#Checkforemptyplacesonboarddefpossibili

ties(board):l=[]

for i in

range(len(board)):forjinrange(l

en(board)):

if board[i][j] ==

0:l.append((i,j))

return(l)

Select a random place for the

playerdefrandom_place(board, player):

selection = possibilities(board)current_loc =

random.choice(selection)board[current_loc]

= playerreturn(board)

14

Checks whether the player has three# of

their marks in a horizontal

rowdefrow_win(board, player):

for x in range(len(board)):True

for y in

range(len(board)):ifboard[x,y

] !=player:

win=Falsecontinue

ifwin==True:return(win)

return(win)

Checks whether the player has three#of

their marksin avertical row

def col_win(board,

player):forxinrange(len(board)):

win=True

for y in

range(len(board)):ifboard[y][x

]!=player:

win=Falsecontinue

ifwin==True:return(win)

return(win)

15

Checks whether the player has three#of

their marks inadiagonal row

def diag_win(board,

player):win=True

y =0

for x in

range(len(board)):ifboard[x,x

] !=player:

win=Falseifwin:

return

winwin=Trueifwi

n:

for x in

range(len(board)):y=len(boar

d)-1-x

if board[x, y] !=

player:win=False

return win

Evaluates whether there

is#awinner or atie

def

16

evaluate(board):winner

=0

forplayerin [1,2]:

if (row_win(board, player)

orcol_win(board,player)

ordiag_win(board,player)):

winner=player

if np.all(board != 0) and

winner==0:winner=-1

return winner

Main function to start the

gamedefplay_game():

board, winner, counter = create_board(), 0,

1print(board)

sleep(2)

while winner ==

0:forplayerin[1,2]:

board = random_place(board, player)print("Board

after " + str(counter) + " move")print(board)

sleep(2)counter+=1

winner = evaluate(board)if

17

winner!=0:

breakreturn(

winner)

#DriverCode

print("Winneris:"+str(play_game()))

Output:

[[000]

[0 00]

[00 0]]

Board after 1

move[[000]

[0 00]

[10 0]]

Board after 2

move[[000]

[0 20]

[10 0]]

Board after 3

move[[010]

[0 20]

[10 0]]

Boardafter4

move[[0 10]

[2 20]

[10 0]]

Boardafter5

move[[1 10]

[2 20]

[10 0]]

18

Boardafter6

move[[1 10]

[2 20]

[12 0]]

Boardafter7

move[[1 10]

[2 20]

[12 1]]

Boardafter8

move[[1 10]

[2 22]

[12 1]]

Winneris: 2

4.Write a program toconstructa Bayesiannetwork from givendata.

1. age:ageinyears

2. sex:sex(1=male;0= female)

3. cp:chestpaintype

Value 1: typical

anginaValue 2: atypical

anginaValue3:non-

anginalpainValue4:asym

ptomatic

4. trestbps:restingblood pressure(in mmHg onadmission tothehospital)

5. chol:serumcholestoral inmg/dl

6. fbs:(fasting bloodsugar >120 mg/dl)(1 =true; 0= false)

7. restecg:restingelectrocardiographicresultsV

19

alue0: normal

Value1:havingST-

Twaveabnormality(Twaveinversionsand/orSTelevationordepression

of>0.05mV)

Value2:showingprobableordefiniteleftventricularhypertrophybyEstes'criteria

8. thalach:maximumheartrateachieved

9. exang:exercise induced angina(1 =yes;0 = no)

10. oldpeak=STdepressioninducedbyexerciserelativetorest11.sl

ope:theslope ofthepeak exercise ST segment

Value1:upsloping

Value2:flat

Value3:downsloping

12. ca=number ofmajorvessels(0-3) colored byflourosopy

13. thal:3= normal;6=fixeddefect;7 =reversabledefect

14. Heartdisease: Itisinteger valued

from0(nopresence)to4.Diagnosisofheartdisease(angiographicdiseasestatus)

Someinstancefromthedataset:

Age sex cp trestbps chol fbs restecg thalach exang oldpeakslopecathal Heartdisease

63 1 1 145 233 1 2 150 0 2.3 3 0 6 0

67 1 4 160286 0 2 108 1 1.5 2 3 3 2

67 1 4 120 229 0 2 129 1 2.6 2 2 7 1

41 0 2 130 204 0 2 172 0 1.4 1 0 3 0

62 0 4 140 268 0 2 160 0 3.6 3 2 3 3

60 1 4 130 206 0 2 132 1 2.4 2 2 7 4

Program:

import numpy as

npimportcsv

importpandasaspd

frompgmpy.modelsimportBayesianModel

frompgmpy.estimatorsimportMaximumLikelihoodEstimatorfr

ompgmpy.inferenceimportVariableElimination

#read Cleveland Heart Disease

dataheartDisease =

pd.read_csv('heart.csv')heartDisease=heartDis

ease.replace('?',np.nan)#displaythedata

print('Fewexamplesfromthedatasetaregivenbelow')prin

t(heartDisease.head())

#Model Bayesian

NetworkModel=BayesianModel([('age','trestbps'),('age','fbs'),

20

('sex','trestbps'),('exang','trestbps'),('trestbps','heartdise

ase'),('fbs','heartdisease'),('heartdisease','restecg'),

('heartdisease','thalach'),('heartdisease','chol')])#Learning

CPDsusingMaximumLikelihoodEstimators

print('\n Learning CPD using Maximum likelihood

estimators')model.fit(heartDisease,estimator=MaximumLikelihoo

dEstimator) #Inferencing with Bayesian Network

print('\nInferencing withBayesian

Network:')HeartDisease_infer =

VariableElimination(model)#computing the

Probability of HeartDisease given

Ageprint('\n1.ProbabilityofHeartDiseasegiven

Age=30')

q=HeartDisease_infer.query(variables=['heartdisease'],evidence

={'age':28})

print(q['heartdisease'])

#computing the Probability of HeartDisease given

cholesterolprint('\n 2. Probability of HeartDisease given

cholesterol=100')q=HeartDisease_infer.query(variables=['heartdis

ease'],evidence

={'chol':100})

print(q['heartdisease'])

Output:

Fewexamplesfromthedatasetaregivenbelowage

sex cp trestbps ...slope ca thal heartdisease0 63

1 1 145 ... 3 0 6 0

1 67 1 4 160 ... 2 3 3 2

2 67 1 4 120... 2 2 7 1

3 37 1 3 130 ... 3 0 3 0

4 41 0 2 130 ... 1 0 3 0

[5rowsx14columns]

Learning CPD using Maximum likelihood

estimatorsInferencingwith Bayesian Network:

1. ProbabilityofHeartDiseasegivenAge=28

╒════════════════╤═════════════════════╕

│heartdisease│phi(heartdisease)│

╞════════════════╪═════════════════════╡

│heartdisease_0│0.6791│

├────────────────┼─────────────────────┤

│heartdisease_1│0.1212│

├────────────────┼─────────────────────┤

│heartdisease_2│0.0810│

├────────────────┼─────────────────────┤

│heartdisease_3│0.0939│

├────────────────┼─────────────────────┤

│heartdisease_4│0.0247│

╘════════════════╧═════════════════════╛

21

2. ProbabilityofHeartDiseasegiven cholesterol=100

╒════════════════╤═════════════════════╕

│heartdisease│phi(heartdisease)│

╞════════════════╪═════════════════════╡

│heartdisease_0│0.5400│

├────────────────┼─────────────────────┤

│heartdisease_1│0.1533│

├────────────────┼─────────────────────┤

│heartdisease_2│0.1303│

├────────────────┼─────────────────────┤

│heartdisease_3│0.1259│

├────────────────┼─────────────────────┤

│heartdisease_4│0.0506│

5.Write a program to infer from the Bayesian network.

from pgmpy.models import BayesianNetwork

from pgmpy.factors.discrete import TabularCPD

from pgmpy.inference import VariableElimination

Define the structure of the Bayesian network

model = BayesianNetwork([('A', 'C'), ('B', 'C')])

Define the conditional probability distributions (CPDs)

cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.6], [0.4]])

cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.7], [0.3]])

cpd_c = TabularCPD(variable='C', variable_card=2,

 values=[[0.8, 0.9, 0.7, 0.1], [0.2, 0.1, 0.3, 0.9]],

 evidence=['A', 'B'], evidence_card=[2, 2])

Add CPDs to the model

model.add_cpds(cpd_a, cpd_b, cpd_c)

Perform inference

22

inference = VariableElimination(model)

Computing the probability of C given evidence for A=1 and B=0

query = inference.query(variables=['C'], evidence={'A': 1, 'B': 0})

print(query)

output:

+------+----------+

| C | phi(C) |

+======+==========+

| C(0) | 0.7000 |

+------+----------+

| C(1) | 0.3000 |

+------+----------+

6.Write a program to illustrate HiddenMarkovModel.

import numpy as np

import pandas as pd

class ProbabilityVector:

 def __init__(self, probabilities: dict):

 states = probabilities.keys()

23

 probs = probabilities.values()

 assert len(states) == len(probs), "The probabilities must

match the states."

 assert len(states) == len(set(states)), "The states must be

unique."

 assert abs(sum(probs) - 1.0) < 1e-12, "Probabilities must

sum up to 1."

 assert len(list(filter(lambda x: 0 <= x <= 1, probs))) ==

len(probs), "Probabilities must be numbers from [0, 1]

interval."

 self.states = sorted(probabilities)

 self.values = np.array(list(map(lambda x: probabilities[x],

self.states))).reshape(1, -1)

 @classmethod

 def initialize(cls, states: list):

 size = len(states)

 rand = np.random.rand(size) / (size ** 2) + 1 / size

 rand /= rand.sum(axis=0)

 return cls(dict(zip(states, rand)))

 @classmethod

24

 def from_numpy(cls, array: np.ndarray, states: list):

 return cls(dict(zip(states, list(array))))

 @property

 def dict(self):

 return {k: v for k, v in zip(self.states,

list(self.values.flatten()))}

 @property

 def df(self):

 return pd.DataFrame(self.values, columns=self.states,

index=['probability'])

 def __repr__(self):

 return "P({})={}".format(self.states, self.values)

 def __eq__(self, other):

 if not isinstance(other, ProbabilityVector):

 raise NotImplementedError

 if (self.states == other.states) and (self.values ==

other.values).all():

 return True

 return False

25

 def __getitem__(self, state: str) -> float:

 if state not in self.states:

 raise ValueError("Requesting unknown probability

state from vector.")

 index = self.states.index(state)

 return float(self.values[0, index])

 def __mul__(self, other) -> np.ndarray:

 if isinstance(other, ProbabilityVector):

 return self.values * other.values

 elif isinstance(other, (int, float)):

 return self.values * other

 else:

 raise NotImplementedError

 def __rmul__(self, other) -> np.ndarray:

 return self.__mul__(other)

 def __matmul__(self, other) -> np.ndarray:

 if isinstance(other, ProbabilityMatrix):

 return self.values @ other.values

 def __truediv__(self, number) -> np.ndarray:

 if not isinstance(number, (int, float)):

26

 raise NotImplementedError

 x = self.values

 return x / number if number != 0 else x / (number + 1e-

12)

 def argmax(self):

 index = self.values.argmax()

 return self.states[index]

a1 = ProbabilityVector({'rain': 0.7, 'sun': 0.3})

a2 = ProbabilityVector({'sun': 0.1, 'rain': 0.9})

print(a1.df)

print(a2.df)

print("Comparison:", a1 == a2)

print("Element-wise multiplication:", a1 * a2)

print("Argmax:", a1.argmax())

print("Getitem:", a1['rain'])

OUTPUT

rain sun

probability 0.7 0.3

 rain sun

probability 0.9 0.1

Comparison: False

Element-wise multiplication: [[0.63 0.03]]

Argmax: rain

Getitem: 0.7

27

7. Write a program to run valuea nd policy iteration in agrid world.

 import numpy as np

import matplotlib.pyplot as plt

class GridWorld(object):

 def __init__(self, gridSize, items):

 self.step_reward = -1

 self.m = gridSize[0]

 self.n = gridSize[1]

 self.grid = np.zeros(gridSize)

 self.items = items

 self.state_space = list(range(self.m * self.n))

 self.action_space = {'U': -self.m, 'D': self.m, 'L': -1, 'R': 1}

 self.actions = ['U', 'D', 'L', 'R']

 self.P = self.int_P()

 def int_P(self):

 P = {}

 for state in self.state_space:

28

 for action in self.actions:

 reward = self.step_reward

 n_state = state + self.action_space[action]

 if n_state in self.items.get('fire').get('loc'):

 reward += self.items.get('fire').get('reward')

 elif n_state in self.items.get('water').get('loc'):

 reward += self.items.get('water').get('reward')

 elif self.check_move(n_state, state):

 n_state = state

 P[(state ,action)] = (n_state, reward)

 return P

 def check_terminal(self, state):

 return state in self.items.get('fire').get('loc') + self.items.get('water').get('loc')

 def check_move(self, n_state, oldState):

 if n_state not in self.state_space:

 return True

 elif oldState % self.m == 0 and n_state % self.m == self.m - 1:

 return True

 elif oldState % self.m == self.m - 1 and n_state % self.m == 0:

 return True

 else:

 return False

def print_v(v, grid):

 v = np.reshape(v, (grid.n, grid.m))

 cmap = plt.cm.get_cmap('Greens', 10)

 norm = plt.Normalize(v.min(), v.max())

 rgba = cmap(norm(v))

 for w in grid.items.get('water').get('loc'):

 idx = np.unravel_index(w, v.shape)

 rgba[idx] = 0.0, 0.5, 0.8, 1.0

 for f in grid.items.get('fire').get('loc'):

 idx = np.unravel_index(f, v.shape)

 rgba[idx] = 1.0, 0.5, 0.1, 1.0

 fig, ax = plt.subplots()

 im = ax.imshow(rgba, interpolation='nearest')

 for i in range(v.shape[0]):

 for j in range(v.shape[1]):

 if v[i, j] != 0:

 text = ax.text(j, i, v[i, j], ha="center", va="center", color="w")

 plt.axis('off')

 plt.show()

def print_policy(v, policy, grid):

 v = np.reshape(v, (grid.n, grid.m))

 policy = np.reshape(policy, (grid.n, grid.m))

 cmap = plt.cm.get_cmap('Greens', 10)

 norm = plt.Normalize(v.min(), v.max())

 rgba = cmap(norm(v))

 for w in grid.items.get('water').get('loc'):

 idx = np.unravel_index(w, v.shape)

 rgba[idx] = 0.0, 0.5, 0.8, 1.0

29

 for f in grid.items.get('fire').get('loc'):

 idx = np.unravel_index(f, v.shape)

 rgba[idx] = 1.0, 0.5, 0.1, 1.0

 fig, ax = plt.subplots()

 im = ax.imshow(rgba, interpolation='nearest')

 for i in range(v.shape[0]):

 for j in range(v.shape[1]):

 if v[i, j] != 0:

 text = ax.text(j, i, policy[i, j], ha="center", va="center", color="w")

 plt.axis('off')

 plt.show()

def interate_values(grid, v , policy, gamma, theta):

 converged = False

 i = 0

 while not converged:

 DELTA = 0

 for state in grid.state_space:

 i += 1

 if grid.check_terminal(state):

 v[state] = 0

 else:

 old_v = v[state]

 new_v = []

 for action in grid.actions:

 (n_state, reward) = grid.P.get((state, action))

 new_v.append(reward + gamma * v[n_state])

 v[state] = max(new_v)

 DELTA = max(DELTA, np.abs(old_v - v[state]))

 converged = True if DELTA < theta else False

 for state in grid.state_space:

 i += 1

 new_vs = []

 for action in grid.actions:

 (n_state, reward) = grid.P.get((state, action))

 new_vs.append(reward + gamma * v[n_state])

 new_vs = np.array(new_vs)

 best_action_idx = np.where(new_vs == new_vs.max())[0]

 policy[state] = grid.actions[best_action_idx[0]]

 print(i, 'iterations of state space')

 return v, policy

if __name__ == '__main__':

 grid_size = (5, 5)

 items = {'fire': {'reward': -10, 'loc': [12]},

 'water': {'reward': 10, 'loc': [18]}}

 gamma = 1.0

 theta = 1e-10

 v = np.zeros(np.prod(grid_size))

 policy = np.full(np.prod(grid_size), 'n')

 env = GridWorld(grid_size, items)

 v, policy = interate_values(env, v, policy, gamma, theta)

 print_v(v, env)

30

 print_policy(v, policy, env)

Output:

31

8.Write a program to do reinforcement learning in a grid world.

import numpy as np

global

variablesBOARD_ROWS=3

BOARD_COLS=4

WIN_STATE= (0,3)

LOSE_STATE=(1,3)

START = (2,

0)DETERMINISTIC=Tru

e

classState:

definit(self,state=START):

self.board=np.zeros([BOARD_ROWS,BOARD_COLS])s

elf.board[1,1] =-1

self.state =

stateself.isEnd=F

alse

self.determine=DETERMINISTIC

defgiveReward(self):

ifself.state==WIN_STATE:r

eturn1

elif self.state ==

LOSE_STATE:return-1

else:

return0

32

defisEndFunc(self):

if(self.state==WIN_STATE)or(self.state==LOSE_STATE):self.isEn

d=True

defnxtPosition(self,action):"

""

action:up, down,left, right

0 |1|2|3|

1|

2|

returnnextposition"

""

ifself.determine:

ifaction=="up":

nxtState=(self.state[0]-

1,self.state[1])elifaction =="down":

nxtState = (self.state[0] + 1,

self.state[1])elifaction =="left":

nxtState = (self.state[0], self.state[1] -

1)else:

nxtState = (self.state[0], self.state[1] +

1)#if next state legal

if(nxtState[0] >=0)and(nxtState[0]<=(BOARD_ROWS-

1)):if(nxtState[1]>=0)and(nxtState[1]<=(BOARD_COLS -1)):

ifnxtState!=(1,1):re

turn nxtState

returnself.state

def

showBoard(self):self.board

[self.state]=1

for i in range(0,

BOARD_ROWS):print(' ')

out= '|'

forjinrange(0,BOARD_COLS):ifs

elf.board[i, j] ==1:

token='*'

ifself.board[i,j]==-

1:token='z'

ifself.board[i,j]==0:to

ken ='0'

out+=token+'|'pri

nt(out)

print(' ')

#Agent ofplayer

33

classAgent:

definit(self):self.s

tates=[]

self.actions = ["up", "down", "left",

"right"]self.State=State()

self.lr=0.2

self.exp_rate=0.3

initial state

rewardself.state_valu

es={}

for i in

range(BOARD_ROWS):forjinr

ange(BOARD_COLS):

self.state_values[(i,j)]=0 #set initial valueto 0

defchooseAction(self):

#chooseactionwithmostexpectedvaluemx

_nxt_reward =0

action=""

if np.random.uniform(0, 1) <=

self.exp_rate:action=np.random.choice(se

lf.actions)

else:

#greedy action

forain self.actions:

#iftheactionis deterministic

nxt_reward =

self.state_values[self.State.nxtPosition(a)]ifnxt_reward

>=mx_nxt_reward:

action=a

mx_nxt_reward =

nxt_rewardreturnaction

deftakeAction(self,action):

position =

self.State.nxtPosition(action)returnStat

e(state=position)

def

reset(self):self.stat

es =

[]self.State=State(

)

defplay(self,rounds=10):i

= 0

34

whilei <rounds:

#totheendofgamebackpropagaterewardifsel

f.State.isEnd:

#back propagate

reward=self.State.giveReward()

explicitly assign end state to reward

valuesself.state_values[self.State.state] = reward# this is

optionalprint("GameEnd Reward", reward)

forsinreversed(self.states):

reward=self.state_values[s]+self.lr *(reward -

self.state_values[s])self.state_values[s]=round(reward, 3)

self.reset()

i +=1

else:

action =

self.chooseAction()#append

trace

self.states.append(self.State.nxtPosition(action))

print("currentposition{}action{}".format(self.State.state,action))#b

y taking the action, itreaches the nextstate

self.State=self.takeAction(action)#

mark is endself.State.isEndFunc()

print("nxtstate",self.State.state)p

rint(" ")

defshowValues(self):

for i in range(0,

BOARD_ROWS):print('

 ')

out = '|'

forj inrange(0, BOARD_COLS):

out+=str(self.state_values[(i,j)]).ljust(6)+'

|'print(out)

print(' ')

ifname ==

"main":ag=Agent()

ag.play(50)print(ag.sho

wValues())

Output:

|0.951|0.969|0.991|1.0

|0.933|0|0.563|-1.0

35

|0.781|0.184|-0.025| -0.2

9.Write a program to implement adaptive dynamic programming.

import libraries

import os

import random

import gym

import copy

import pickle

import numpy as np

import matplotlib.pyplotaspl

t#Plot values

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defplot_values(V):

#reshapevaluefunction

V_sq=np.reshape(V,(8,8))#pl

otthestate-valuefunction

fig=plt.figure(figsize=(10,10))a

x=fig.add_subplot(111)

im=ax.imshow(V_sq,cmap='cool')for(j

,i),labelinnp.ndenumerate(V_sq):

ax.text(i, j, np.round(label, 5), ha='center', va='center',

fontsize=12)plt.tick_params(bottom='off',left='off',labelbottom='off',lab

elleft='off')plt.title('State-ValueFunction')

plt.show()

#Performapolicyevaluation

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynbdef

policy_evaluation(env,policy,gamma=1,theta=1e-8):

V=np.zeros(env.nS)

whileTrue:

delta=0

fors in range(env.nS):

Vs=0

fora,action_probinenumerate(policy[s]):

forprob,next_state,reward,doneinenv.P[s][a]:

Vs += action_prob * prob * (reward + gamma *

V[next_state])delta=max(delta, np.abs(V[s]-Vs))

V[s]=Vs

ifdelta<theta:

36

break

returnV

#Performpolicyimprovement

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defpolicy_improvement(env, V, gamma=1):

policy=np.zeros([env.nS,env.nA])/env.nAfor

s in range(env.nS):

q=q_from_v(env,V,s,gamma)

#OPTION1:constructadeterministicpolicy#po

licy[s][np.argmax(q)]=1

#OPTION2:constructastochasticpolicy

thatputsequalprobabilityonmaximizingactions

best_a=np.argwhere(q==np.max(q)).flatten()

policy[s]=np.sum([np.eye(env.nA)[i] foriinbest_a],axis=0)/len(best_a)

returnpolicy

#Obtain qfrom V

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defq_from_v(env, V, s,gamma=1):

q =

np.zeros(env.nA)forai

nrange(env.nA):

for prob, next_state, reward, done in

env.P[s][a]:q[a]+=prob* (reward+gamma*

V[next_state])

returnq

#Performpolicyiteration

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defpolicy_iteration(env,gamma=1,theta=1e-8):

policy=np.ones([env.nS,env.nA])/env.nAwh

ileTrue:

V=policy_evaluation(env,policy,gamma,theta)ne

w_policy=policy_improvement(env, V)

#OPTION1:stopifthepolicyisunchanged

afteranimprovementstepif(new_policy ==policy).all():

break;

#OPTION2:stopifthevaluefunctionestimatesforsuccessivepolicieshasconverged#ifnp.ma

x(abs(policy_evaluation(env,policy) -policy_evaluation(env,new_policy)))<

theta*1e2:

break;

37

policy=copy.copy(new_policy)r

eturnpolicy, V

#Truncatedpolicy evaluation

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

deftruncated_policy_evaluation(env,policy,V,max_it=1,gamma=1):nu

m_it=0

while num_it <

max_it:forsinrange(en

v.nS):

v =0

q=q_from_v(env,V, s,gamma)

fora,action_probinenumerate(policy[s]):v

+=action_prob * q[a]

V[s] =

vnum_it+=1

returnV

#Truncated policy iteration

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

def truncated_policy_iteration(env, max_it=1, gamma=1, theta=1e-

8):V=np.zeros(env.nS)

policy=np.zeros([env.nS,env.nA])/env.nAwh

ileTrue:

policy=policy_improvement(env,V)o

ld_V =copy.copy(V)

V=truncated_policy_evaluation(env,policy,V,max_it,gamma)ifm

ax(abs(V-old_V))<theta:

break;retu

rnpolicy,V

#Valueiteration

https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defvalue_iteration(env,gamma=1,theta=1e-8):

V=np.zeros(env.nS)

whileTrue:

delta=0

for s in

range(env.nS):v=V[

s]

V[s]=max(q_from_v(env,V,s,gamma))del

ta=max(delta,abs(V[s]-v))

ifdelta<theta:b

reak

policy=policy_improvement(env,V,gamma)re

turnpolicy, V

Get an action (0:Left, 1:Down, 2:Right,

3:Up)defget_action(model, state):

38

returnnp.random.choice(range(4),p=model[state])#

Saveamodel

defsave_model(bundle:(),type:str):

withopen('models\\frozen_lake'

+type+'.adp','wb')asfp:pickle.dump(bundle, fp)

#Load amodel

def load_model(type:str) ->

():if(os.path.isfile('models\\frozen_lake'+type+'.adp')==True):

withopen('models\\frozen_lake'+type+'.adp','rb')asfp:returnpi

ckle.load(fp)

else:

return(None,None)

The main entry point for this

moduledefmain():

#Createanenvironment

env=gym.make('FrozenLake8x8-

v0',is_slippery=True)#Print information about the

problem

print('---FrozenLake ---')

print('Observationspace:{0}'.format(env.observation_space))p

rint('Actionspace: {0}'.format(env.action_space))

print()

#Printone-

stepdynamics(probability,next_state,reward,done)print('---One-

step dynamics')

print(env.P[1][0])

print()

(1) Random

policy#model,V=load_mode

l('1')

model=np.ones([env.nS,env.nA])/env.nAV

=policy_evaluation(env, model)

print('OptimalPolicy(LEFT=0,DOWN =1,RIGHT=2,

UP=3):')print(model,'\n')

plot_values(V)save_model(

(model,V),'1')#(2)Policy

iteration

##model, V =

load_model('2')#model,V=policy

_iteration(env)

#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP

=3):')#print(model,'\n')

#plot_values(V)#save_model

((model,V),'2')

#(3)Truncatedpolicyiteration##

model, V =load_model('3')

#model, V = truncated_policy_iteration(env,

max_it=2)#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP

39

=3):')#print(model,'\n')

#plot_values(V)

#save_model((model, V),

'3')#(4)Valueiteration##mode

l,V=load_model('4')

#model,V=value_iteration(env)

#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP

=3):')#print(model,'\n')

#plot_values(V)#save_mode

l((model,V),'4')#Variables

episodes=10

timesteps=200

total_score=0#L

oopepisodes

forepisodein range(episodes):

Start episode and get initial

observationstate=env.reset()

#Resetscores

core=0

#Loop timesteps

fort inrange(timesteps):

#Getanaction(0:Left,1:Down,2:Right,3:Up)acti

on=get_action(model, state)

#Performastep

Observation (position, reward: 0/1, done: True/False, info:

Probability)state,reward, done, info =env.step(action)

Update

scorescore+=re

ward

total_score+=reward

#Checkifwearedone(gameover)ifdo

ne:

#Render themap

print('--- Episode {} ---

'.format(episode+1))env.render(mode='hum

an')

print('Score:{0},Timesteps:{1}'.format(score,t+1))pr

int()

break

Close the

environmentenv.close()

#Print thescore

print('---Evaluation---')

print ('Score: {0} / {1}'.format(total_score,

episodes))print()

40

#Tell python torunmain method

ifname =="main":main()

output:

RandomPolicy

---FrozenLake---

Observationspace:Discrete(64)

Actionspace: Discrete(4)

---One-stepdynamics

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False),

(0.3333333333333333,9,0.0,False)]

OptimalPolicy(LEFT=0,DOWN=1,RIGHT=

2,UP=3):[[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.250.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.250.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

41

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.250.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]]

---Episode1---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:0.0,Timesteps:10

---Episode2---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFF

42

FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG

Score:0.0,Timesteps:75

---Episode3---

(Up)SFFFFFFF

FFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFFF

HHFFFHFFHF

FHFHFFFFHF

FFG

Score:0.0,Timesteps:28

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:0.0,Timesteps:20

---Episode5---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:0.0,Timesteps:8

---Episode6---

(Left)SFFFFFF

FFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHF

43

FHFFHFHF

FFFHFFFG

Score:0.0,Timesteps:51

---Episode7---

(Up)SFFFFFFF

FFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFFF

HHFFFHFFHF

FHFHFFFFHF

FFG

Score:0.0,Timesteps:19

---Episode8---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:0.0,Timesteps:26

---Episode9---

(Left)SFFFFFF

FFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHFFH

FFHFHFFFFH

FFFG

Score:0.0,Timesteps:24

---Episode10---

(Down)SFFFFF

FFFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHFFHF

FHFHFFFFHFF

FG

44

Score:0.0,Timesteps:31

---Evaluation---

Score:0.0 /10

Output:

PolicyIteration

---FrozenLake---

Observationspace:Discrete(64)

Actionspace: Discrete(4)

---One-stepdynamics

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False),

(0.3333333333333333,9,0.0,False)]

OptimalPolicy(LEFT =0, DOWN=1,RIGHT=2,UP =3):[[0.

0.50.50.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.1.0.]

[0.0.0.1.]

[0.0.0.1.]

[0.0. 0. 1.]

[0.0.0.1.]

[0.0.0.1.]

[0.0.0.1.]

[0.0.0.1.]

[0.0.1.0.]

[1.0.0.0.]

[1.0.0.0.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[0.0.0.1.]

[0.0.0.1.]

[0.0.1.0.]

[1.0.0.0.]

[1.0.0.0.]

[1.0.0.0.]

[0. 0.50.0.5]

[1. 0.0.0.]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[0.0.1.0.]

45

[1.0.0.0.]

[0.0.0.1.]

[0.50. 0.0.5]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[0.1.0.0.]

[0.0.0.1.]

[0.0.1.0.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0. 0.50.5 0.]

[0.0.0.1.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.0.5 0.5 0.]

[0.50. 0. 0.5]

[0.250.25 0.25 0.25]

[0.50.0.50.]

[0.250.25 0.25 0.25]

5]

[0.250.25 0.25 0.25]]

---Episode1---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:36

---Episode2---

(Right)SFFFFF

FF

[0. 0. 1. 0.]

[1. 0. 0. 0.]

[0. 1. 0. 0.]
[1. 0. 0. 0.]

[0.25
[0.

0.250.250.2
0.50.5 0.]

[0. 0. 1.0.]
[0. 1. 0.0.]

46

FFFFFFFFF

FFHFFFFF

FFFFHFFF

FFHFFFFF

HHFFFHFF

HFFHFHFF

FFHFFFG

Score:1.0,Timesteps:169

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:113

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:94

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:66

---Episode6---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFF

47

FFFFFHFF

FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG

Score:1.0,Timesteps:111

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:132

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:40

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:111

---Episode10---

(Right)SFFFFFF

FFFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFF

48

FHHFFFHF

FHFFHFHF

FFFHFFFG

Score:1.0,Timesteps:116

---Evaluation---

Score:10.0/ 10

TruncatedPolicyIteration

---FrozenLake---

Observationspace:Discrete(64)

Actionspace: Discrete(4)

---One-stepdynamics

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False),

(0.3333333333333333,9,0.0,False)]

OptimalPolicy(LEFT =0, DOWN=1, RIGHT=2,UP= 3):

25]
[0. 0. 1. 0.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 1. 0.]

[1. 0. 0. 0.]

[1. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 0.50. 0.5]

[1. 0.0. 0.]

[0.250.25 0.25 0.25]

[[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 1. 0.]

[1. 0. 0. 0.]

[1. 0. 0. 0.]

[1.
[0.25

0.
0.2

0.
5

0.]
0.25 0.

49

[0.0. 1. 0.]

[0.0. 1. 0.]

[1.0. 0. 0.]

[0.0. 0. 1.]

[0.50. 0. 0.5]

[0.250.25 0.25 0.25]

[0. 0. 1. 0.]
[0. 1. 0. 0.]

[0. 0. 0. 1.]

[0. 0. 1. 0.]
[1. 0. 0. 0.]

[0.250.25 0.25 0.25]
[0.250.25 0.25 0.25]
[0. 0.50.5 0.]

[0. 0. 0.1.]
[1. 0. 0.0.]

[0.250.25 0.25 0.25]
[0. 0.1.0.]

50

(Right)SF

FFFFFFFFF

FFFFFFFF

HFFFFFFF

FFHFFFFF

HFFFFFHH

FFFHFFHF

FHFHFFFF

HFFFG

Score:1.0,Timesteps:97

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:127

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:113

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:44

---Episode6---

(Right)SFFFFF

FF

51

FFFFFFFFF

FFHFFFFF

FFFFHFFF

FFHFFFFF

HHFFFHFF

HFFHFHFF

FFHFFFG

Score:1.0,Timesteps:166

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:42

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:170

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:75

---Episode10---

(Right)SFFFFFF

FFFFFFFFFFFF

HFFFF

52

FFFFFHFF

FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG

Score:1.0,Timesteps:57

---Evaluation---

Score:10.0/ 10

ValueIteration

---FrozenLake---

Observationspace:Discrete(64)

Actionspace: Discrete(4)

---One-stepdynamics

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False),

(0.3333333333333333,9,0.0,False)]

OptimalPolicy(LEFT =0, DOWN=1, RIGHT=2,UP= 3):

25]

[0.0.1.0.]

[0.0.0.1.]

[0.0.0.1.]

[0.0.1.0.]

[1.0.0.0.]

[1.0.0.0.]

[1.0.0.0.]

[0. 0.50.0.5]

[[0. 1. 0. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 1. 0.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 0. 1.]

[0. 0. 1. 0.]

[1. 0. 0. 0.]

[1. 0. 0. 0.]

[1.
[0.25

0.
0.2

0.
5

0.]
0.25 0.

53

[1. 0.0.0.]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[0.0.1.0.]

[1.0.0.0.]

[0.0.0.1.]

[0.50. 0.0.5]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[0.1.0.0.]

[0.0.0.1.]

[0.0.1.0.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.250.25 0.25 0.25]

[0. 0.50.5 0.]

[0.0. 0. 1.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.0.1.0.]

[1.0.0.0.]

[0.250.25 0.25 0.25]

[0.0.5 0.5 0.]

[0.50. 0. 0.5]

[0.250.25 0.25 0.25]

[0.50.0.50.]

[0.250.25 0.25 0.25]

5]

[0.250.25 0.25 0.25]]

---Episode1---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

[0. 0. 1. 0.]

[1. 0. 0. 0.]

[0. 1. 0. 0.]
[1. 0. 0. 0.]

[0.25
[0.

0.250.250.2
0.50.5 0.]

[0. 0. 1.0.]
[0. 1. 0.0.]

54

Score:1.0,Timesteps:96

---Episode2---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:116

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:188

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:124

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:0.0,Timesteps:200

---Episode 6---

55

(Right)SF

FFFFFFFFF

FFFFFFFF

HFFFFFFF

FFHFFFFF

HFFFFFHH

FFFHFFHF

FHFHFFFF

HFFFG

Score:1.0,Timesteps:71

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:90

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:102

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG

Score:1.0,Timesteps:52

---Episode10---

(Right)SFFFFFF

56

10 .Write a program to implement active dynamic programming.

import numpy as np

Define the environment

num_states = 5

num_actions = 2

gamma = 0.9 # Discount factor

Initialize value function

V = np.zeros(num_states)

Define the reward matrix

rewards = np.array([[0, -1],

 [-1, 1],

 [0, -1],

 [0, 1],

 [-1, 0]])

Define the transition matrix

transitions = np.array([[1, 2],

 [0, 3],

 [3, 4],

 [4, 0],

 [2, 1]])

Active dynamic programming algorithm (Policy Evaluation)

num_iterations = 100

for iteration in range(num_iterations):

 for state in range(num_states):

 value_sum = 0

 for action in range(num_actions):

 next_state = transitions[state, action]

 reward = rewards[state, action]

 value_sum += (1 / num_actions) * (reward + gamma * V[next_state])

 V[state] = value_sum

Print the learned value function

print("Learned Value Function:")

print(V)

output:

57

11. Write a program to implement Q learning.

Scenario–RobotsinaWarehouse

Agrowinge-commercecompany isbuildinganew

warehouse,andthecompanywouldlikeallofthepicking operationsin the

newwarehousetobeperformed by warehouserobots.

In the context of e-commerce warehousing, “picking” is the task of gathering individual

itemsfromvarious locations inthe warehousein order tofulfill customer orders.

After picking items from the shelves, the robots must bring the items to a specific location

withinthewarehousewheretheitems can bepackagedfor shipping.

Inordertoensuremaximum efficiencyandproductivity,therobotswill needtolearntheshortestpath

between the item packaging area and all other locations within the warehouse where

therobotsareallowed to travel.

WewilluseQ-learningtoaccomplish thistask!

import numpy as np

Define the environment

num_states = 5

num_actions = 2

gamma = 0.9 # Discount factor

Initialize Q-values

Q = np.zeros((num_states, num_actions))

Define the reward matrix

rewards = np.array([[0, -1],

 [-1, 1],

 [0, -1],

 [0, 1],

 [-1, 0]])

Define the transition matrix

transitions = np.array([[1, 2],

 [0, 3],

 [3, 4],

58

 [4, 0],

 [2, 1]])

Q-learning parameters

learning_rate = 0.1

num_episodes = 1000

Q-learning algorithm

for episode in range(num_episodes):

 state = np.random.randint(0, num_states) # Start in a random state

 while True:

 action = np.argmax(Q[state, :]) if np.random.rand() < 0.9 else np.random.randint(0,

num_actions)

 next_state = transitions[state, action]

 reward = rewards[state, action]

 Q[state, action] += learning_rate * (reward + gamma * np.max(Q[next_state, :]) - Q[state,

action])

 state = next_state

 if state == 3: # Reached the goal state

 break

Print the learned Q-values

print("Learned Q-values:")

print(Q)

output:

Learned Q-values:

[[6.05065624 3.21662706]

 [3.91063512 6.75111902]

 [5.73632427 2.32665716]

 [2.44769353 6.39962286]

 [0.84239431 6.044576]]

59

12. Artificialintelligencetest:a casestudyofintelligentvehicles.

12.Artificialintelligence test:acasestudyofintelligentvehicles

60

Abstract:

To meet the urgent requirement of reliable artificial intelligence applications, we discuss the

tightlink between artificial intelligence and intelligence test in this paper. We highlight the role

oftasks in intelligence test for all kinds of artificial intelligence. We explain the necessity

anddifficulty of describing tasks for intelligence test, checking all the tasks that may encounter

inintelligence test, designing simulation-based test, and setting appropriate test

performanceevaluation indices. As an example, we present how to design reliable intelligence

test forintelligentvehicles. Finally,wediscussthefuture research directionsof intelligencetest.

Introduction:

Artificial intelligence (AI) usually refers to intelligence exhibited by machines. Nowadays,

AIhas transformed our lives in many aspects, from semi-autonomous cars on the roads to

roboticvacuumsinour homes.With nodoubts, AIwill continueto invadeeveryareaofour

lives,fromhealthcareto education, entertainmentto security, in the next20years.

To answer such questions, we need to rethink what artificial intelligence is. Clearly,

thedefinitiongivenat thebeginning ofthis paperis notprecise. Amorerigorousdefinition

canbegiven as “Artificial intelligence is the intelligence (that is similar to or the same kind as

humanintelligence)exhibited bymachines (in thesame task)”.

We can see that this new definition reveals the tight link between artificial intelligence

andintelligence test. If and only if a machine finishes a set of specially designed tasks, we can

saythat this machine exhibits intelligence as human. This new definition is similar to

Minsky’sdefinition: AI is “the science of making machines capable of performing tasks that

would requireintelligenceifdoneby[humans]”(Minsky1968).

Thedifferenceisthatourdefinitionfocuses onthe result (performing tasks); while Minsky’s

definition highlights the cause (the requiredintelligence). This definition belongs to the so-called

behavior type AI definition proposed in(Russelland Norvig2010).

Moreover, the choice of the designed tasks characterizes the kind of intelligence that

thismachine can have. Two sets of tasks may have no or few overlaps so that we cannot

simplydeterminewhichoneis moredifficult.For example,anilliterate

humanmaybeadriverandawell-educatedblinded human may not be able to drive.

Turing is the first researcher who realized the importance of intelligence test for

developingartificial intelligence (Turing 1950). He proposed a test in which a human evaluator

would judgenatural language conversations between a human and a machine designed to

generate human-likeresponses. If the evaluator cannot reliably distinguish the machine from the

human, the machineissaid to havefinished thetask and passed the test.

However, Turing test has several shortcomings and cannot be directly applied in many

otherapplications which require reliable intelligence test for machines (Levesque 2014,

2017;Ackerman 2014; Schoenick et al. 2017). One example is intelligent vehicles that draw

greatattention from researchers, automobile manufacturers and the public in the last 10 years (Li

andWang 2007; Eskandarian 2012). In order to solve this problem, some initial attempts had

beencarried out recently (Broggi et al. 2013, 2015; Huang et al. 2014; Wagner and Koopman

2015; Liet al. 2017; Koopman and Wagner 2017; Watzenig and Horn 2017a, b; Zhao et al.

2017), butnone of them give a clear portrait of the difficulties of intelligence test and explain the

origins ofthesedifficulties.

Facing such a predicament, some researchers claimed that machine-learning based autonomy

isbrittle and lacks ‘legibility’. In contrast, more researchers believed that the field of autonomy

isundergoingamachinelearning revolution. Theythought thattheright timehas comeandwe

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR66
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR76
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR89
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR52
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR53
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR1
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR79
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR54
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR23
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR8
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR9
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR38
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR93
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR43
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR100
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR101
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR103

61

shouldcombineadvancesinintelligentmachinelearningwithintelligentmachinetestingofempiri

calautonomy applications.

Noticing that testing of intelligence is attracting more interests in recent studies, we survey

thestate-of-the-art achievements in this field in this paper. We account for the difficulties

ofintelligence test, highlight the role of tasks in intelligence test for all kinds of

artificialintelligence, and discuss how to design reliable intelligence test for intelligent vehicles.

We willnot discuss the so-called strong (or hard) artificial intelligence which requires an

intelligentmachine to have an artificial general (full) intelligence and exhibit behavior as flexible

ashumans do (Ohlsson et al. 2017). Instead, we will focus on intelligence test for weak (or

soft)artificialintelligencewhichrequiresanintelligentmachinetosolvespecific

problemsashumanswould do (Newell and Simon 1976; Kurzweil 2005). Furthermore, the recent

progress inintelligent vehicles indicates that appropriate testing methods could help significantly

improvetheefficiencyofintelligencetestandthusincrease thereliability ofsomeintelligentmachines.

Allthepromising achievementsurgeusto putmoreeffortsintothis

researchfield.Thevalidation oftasks:

The above assumption naturally leads to the second difficulty of intelligence test: How

toguarantee that the machine acts accordingly for all the tasks that may encounter in a

scenario?In general, we could view task validation as a decision problem that has been studied

incomputability (complexity) theory (Bradley and Manna 2007; Ding et al. 2013; Kroening

andStrichman 2016). The input of the machine is the setting of tasks. If the machine passes a

task,we assume it outputs “yes”; otherwise it outputs “no”. We hope that the machine outputs

“yes”forallpossible inputs.

The complexity of decision problem varies significantly. Though few theoretical analysis

hadbeen made for intelligence test, we can easily find that some tasks are at least as hard as

thenondeterministic polynomial time (NP) decision problems (Karp 1972). Till now, we still do

nothave the ranking standard to evaluate the complexity level of special kinds of

artificialintelligence. We believe more and more research interests will be attracted to such a

field in thenearfuture.

For some relatively simple intelligence tests, if the scenario can be described in terms of

discretevariables, we enumerate all the tasks that may occur and validate the performance of

machine ineach possible task. This is often troublesome and time-consuming, due to the

famouscombinatorial explosion problem. For example, a brute force validation reported in

(Lamb 2016)had generated a 200-terabyte proof. If the scenario is described in terms of

continuous variables,things may become worse, since we cannot enumerate all the combinations

of variables due totheircontinuity.

One widely-used strategy to handle such problems is to sample the countless combinations

ofvariables and just check the performance of the machine within these limited sampled tasks.

Ifthese representative test samples are appropriately selected, the machine which has finished

allthe sampled tasks is expected to behave well for all the remaining tasks, since the capability

ofthe machine is built to be generalizable. For example, AlphaGo does not enumerate all

thebranchesofGogame,if weviewallthedecisionspaceof Gogame asadecisiontree.Instead,itsbuild-

in policy-network helps to filter many branches of the Go game tree and just sample a

fewnodesofthis treeto trainthe machine(Silver etal. 2016,2017b; HeuleandKullmann 2017).

Competition between AlphaGo and human masters show that the policy-network based

samplingstrategygenerallyworkswell.However,AlphaGostilllostonegametoLeeSedol,due to

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR69
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR68
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR48
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR7
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR21
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR44
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR41
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR49
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR80
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR46

62

incompletetrainingsamples in2016.ThedesignersofAlphaGo usedmore samples

toteachthemachineto fix this problem and wonall the official 60 games in 2017.

The sampling process can be guided by deterministic rules, or randomly data-driven, or

evenmixed. For example, researchers had proved that solving the Sudoku minimum number of

cluesproblem is 16 via hitting set enumeration (Mcguire et al. 2014). Differently, at least

partiallyrandomly, data-driven adversarial decision-exploration and self-playing help build

AlphaGofroma zero-knowledgebeginnerof Go gametoasuper Go master.

It should be pointed out that gaming is found to be a very effective task exploration tool

whichprovides a good way to find the new samples for continuous learning and testing.

Interestingly,Turing may be the first one to realize the power of gaming in artificial

intelligenceimplementation and testing (Turing 1950). The emerging Generative Adversarial

Nets (GAN)(Goodfellow et al. 2014) and the recently proposed parallel learning framework

(Li et al. 2017)canall beviewed asapplicationsof gaming based(adversarial) learning.

For some artificial intelligence applications, we will require the machine to pass all

therepresentative tasks that will cover the whole task space. For example, we aim to test

everypossible extreme task an intelligent vehicle may encounter in practice (Zheng et al. 2004;

Li etal. 2012,2017; Huang et al. 2014; Wagner and Koopman 2015; Watzenig and Horn 2017a,

b;Zhao et al. 2017), so as to avoid any severe accidents (A Tragic Loss 2016). However, no

onecan guarantee that AlphaGo will not lose a game anymore (Wang 2016a,b). How many

sampletasksthat areneededremains to befathomed.

Thedesignofsimulation-basedtest

The desire to sample enough tasks forces us to resort to simulation-based intelligence test,

sincethe time and financial costs of practical intelligence tests are often too high to afford. This

leadsto the third difficulty of intelligence test: How to make the simulation-based test as “real”

aspossible?

We could roughly categorize the simulating objects into three kinds: natural objects, man-

madeobjects and human ourselves. Man-made objects are relatively easy to simulate because

weusually know the exact math or physical disciplines that govern the behaviors of these

objects.Some natural objects are difficult to simulate since they are much more complex to

model. Weusually introduce certain simplification and just reproduce the major features of these

objects.For example, we assume that the arriving rate of vehicles follows certain distributions to

test theperformanceof intelligenttraffic controlsystems (Tonget al.2015; Liet al.2016a,b).

To mimic human behaviors is difficult. Actually, we meet a causal loop here: to test whether

amachine behaves like a human, we need to set up simulation-based test; and to better

simulatehuman that may interact with the machine, we need to well describe and simulate

behaviors ofhuman. This again requires us to judge whether the machine behaves like a human.

The onlypossible solution to this dilemma is to build a spiral escalation process: the simulation

willincreaseourknowledgeabouthowtodescribeandsimulatebehaviorsofhuman,andmeanwhile,the

gained knowledge helps better simulate human behaviors (Wang et al. 2016a; Li et al.

2017).Thesetting of performanceindices

Inmany applications,wehavedifferentgoalsofusingintelligentmachines.Thisleadstothefourth

difficulty of intelligence test: How to establish the appropriate test

performanceevaluationindices for tasks?

The first kind of performance indices is to require the machine to behave like a human. A

simpleyet effective is to first observe how human operate in a certain task and then set up a

criterion tomeasurehow

closeartificialintelligentmachineoperationsdifferfromhumanoperations(Argall

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR65
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR89
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR31
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR104
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR55
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR38
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR93
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR100
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR101
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR103
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR62
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR94
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR95
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR88
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR56
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR57
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR96
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58

63

etal.2009;Bagnell 2015;Kuefler etal.2017).Therefore,theproblemistransferredintofindingan

appropriate criterion that is able to robustly and smartly distinguish between intelligentmachine

operations and human operations, based on limited samples. Many researchers

againresortedtotheemerging GenerativeAdversarialNets(GAN)(Ho and Ermon2017;Merelet

al. 2017), since we do not need to provide explicit rules to measure the difference. The

implicit(dis)similarity between man-made and machine-made data will be automatically

extracted andcomparedwhenGANiscorrectlyused.However,

wehavetoadmitthat,forsomeapplications,westill do not know how to set

anappropriatequantitative criteria.

The second kind of performance indices is to reach the best performance. For example, in

allchessgames, weaim tobuild themachinethat canbeat alltheotheropponentsratherthanmakeit

play like a human player. It is relatively easy to set the corresponding performance indices

forsuchsingle-objectiveapplications.

Unlike chess games in which players only aim to win, many intelligent applications have multi-

objectives. For example, intelligent vehicles consider driving safety, travel speed,

fuelconsumption, and some other issues. Because different performance indices may lead to

quitedifferent implementations of intelligent machines, we should be very careful to set

appropriateperformanceindices to balance different objectives.

In 2016–2017 Intelligent Vehicle Future Challenge hold in Changshu city of China, the

timeusedbyaparticipatingvehicletopassthegiven10taskswastakenasone ofthestandardsofgrading

for intelligence level, since it is a nice synthetic criterion. Any traffic violation (e.g.running

through a red light) will lead to a deduction of the final score. It is interesting thatchallenge

participators have noticeably different preferences of the deduction values for

eachtask.Thejudges had to holda 3-h meeting to finallysettle down the scoring rules.

Moreover,whenthepersonalfeelingisconsidered,itbecomesevenhardertosettheappropriateperform

ance indices. For example, personal preferences of driving may vary significantly fromperson to

person (Classen et al. 2011; Butakov and Ioannou 2015; Lefèvre et al. 2015). To thebest of our

knowledge, few studies had established an accurate, flexible, and adjustable standardofgrading

fordifferent personalizing aspects of driving.

Intelligencetestforintelligentvehicles

Since it is impossible to summarize all the AI applications, we take intelligent vehicles as

anexampletopresent aframeworkofintelligencetestandreview

thelatestadvanceinthisfield.Thedefinition and generation ofintelligencetest tasks forvehicles

Most previous tests of intelligent vehicles did not provide a clear definition of

drivingintelligence. We can roughly categorize them into two kinds: scenario-based

tests andfunctionality-basedtests.

Scenario-based tests, such as DARPA Grand Challenge and DARPA Urban Challenge,

justrequire an autonomous vehicle to pass a special region safely within a limited time

(DARPAGrandChallengeandDARPAUrbanChallenge2004–

2007;Buehleretal.2009;Campbelletal. 2010). The number and the kind of traffic participants are

not clearly defined. The scene

andthedrivingenvironmentisnotexplicitlygiven,either.Thisismainlybecauseresearcherscannotenu

merate all the possiblesettings of driving situations.

Functionality-based (ability-based) tests examine three components of driving

intelligence:sensing/recognition functionality, decision functionality according to the recognized

information,and action functionality with respect to the decision (Li et al. 2012, 2016a, b; Huang

et al. 2014;Hernández-Orallo 2017). Special detailed functions (e.g., traffic sign recognition) will

be furthertestedwithspeciallydesignedtasks (GTSDB 2014).However,existingfunctionality-based

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR3
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR4
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR45
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR37
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR86
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR17
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR13
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR51
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR19
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR12
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR14
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR55
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR56
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR57
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR38
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR36
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR34

64

tests

65

are carried out separately and independently, which makes it impossible to get a

comprehensiveunderstandingoftheintelligencelevel ofvehiclesandthusdegrades

thereliabilityofsuchtests.

Recently,asemantic relationdiagramfordrivingintelligencewasproposedin(Li et

al. 2016a,b) to better define the intelligence of vehicles. Task atoms are on one side of

thissemantic relation diagram, while function atoms are on the other side of this semantic

relationdiagram.Thelinksbetweenthesetwosidesdenotethatitusuallyrequiresanautonomousvehiclet

o perform several function atoms to fulfill any task atom. Moreover, various combinations oftask

atoms can be grouped into different kinds of driving scenarios. Meanwhile, analogous tohuman

drivers, the function atoms can also be grouped into three major

categories:sensing/recognitionfunctionality,decisionfunctionality,andactionfunctionality;seeFig.1

.

Fig. 1

An illustration of the semantic relation diagram for driving intelligence of autonomous

vehiclesWe can see that scenario-based tests only emphasize the left part of this semantic

relationdiagram; while functionality-based (ability-based) tests only emphasize the right part of

it. So,this semantic relation diagram actually integrates the two major kinds of intelligent

vehicletesting approaches. Moreover, if we transverse from the right side of the semantic

relationdiagram to the left side of the semantic diagram, we will generate the desired test task

that isneededforsomespecialfunctions(abilities).So,

thissemanticrelationdiagramnotonlydefinestheintelligencerequiredto drive avehiclebutalso gives

theway oftest task generation.

Based on this semantic relation diagram definition, a detailed test design can be simplified as

aspecial temporal and spatial arrangement of task atoms. As shown in Fig. 2, each task can

betaken as a rectangle. The left vertical boundary of this rectangle denotes the time that a

taskstarts,and;theright verticalboundarydefines the maximalallowable

timewhenataskmustbefinished. The left horizontal boundary of this rectangle denotes the

position that a task starts,and; the right horizontal boundary defines the maximally allowable

position where a task mustbe finished. Since a vehicle may need to process and finish several

task atoms simultaneously,thetemporal-spatial rangeof atask may beoverlapped withthoseof

othertasks.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR56
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR57
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig1
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig1
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig2

66

Fig. 2

67

An illustration of transforming a typical driving scenario into the corresponding temporal-

spatialplot of the assigned tasks and generating sample instances of the related objects in

simulation,accordingto theassignedtemporal-spatial positions of tasks

The number of task atoms, the difficulties of task atoms, and the numbers of concurrent

taskatoms all influence the difficulty of a particular task. Varying all these factors, we can

sampleandtest tasks with different difficulty levels;seeFig.2.

Itisinterestingtocomparetheabovetaskdefinitionandgenerationprocesswiththeso-calledV-model

which is frequently used for conventional automobile software development. V-modelmeans

Verification and Validation model. As shown in the right part of Fig. 3, it assumes thattestingof

the systemis planned inparallel with acorresponding phaseofdevelopment.

Fig. 3

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig2
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig3

68

Anillustration ofthe V-model

The first phase of the V-model is the requirement phase which creates a system testing

planbeforedevelopmentstarts.Thecorrespondingtestplanfocusesonmeetingthefunctionalitysp

ecifiedin therequirements gathering.

The second phase of the V-model is the high-level design phase which characterizes

systemarchitecture and design, providing an overview of the solution. Correspondingly, an

integrationtestplanis createdinthisphaseaswell inordertotestthepieces

ofthesoftwaresystemsabilitytowork together.

The third phase of the V-model is the low-level design phase which designs the actual

softwarecomponents, defines the operation rules for each component of the system, and sets

therelationshipbetweeneachdesignedclasses.Correspondingly,componenttestsarecreatedinthispha

se.

The fourth phase of the V-model is the module design phase which further decomposes

thecomponents into a number of software modules that can be freely combined. The bottom

phaseof the V-model is the coding phase where all design is converted into the code by

developers.Thedependencesofdifferentmodulesareminimized.Correspondingly,unittestingisperfo

rmedbythe developers on theobtained codeto checktheperformanceof modules.

Ifwecombinethe aforementionedtesttasksgeneration methodwiththeV-model,wecangetaΛΛ–

V-model asshown in Fig. 4. Sincethe definition oftheup-level“scenario”is usually

much more abstract than the definition of the low-level “task” and “function”, we use the

Greeksymbol ΛΛ to represent this top-down design. The phase-by-phase specification in the V-

modelis right a transverse from the left side of the semantic relation diagram to the right side of

thesemanticdiagram.

Fig. 4

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig4

69

AnillustrationoftheΛΛ–V-model

Theframeworkof intelligencetestingsystemforvehicles

Whentest tasksaredetermined,wewillbuild thetesting system.

V-model is simple and easy to use for small system development where requirements can

bestraightforwardly understood. However, test designing happens before coding in the V-

model.This makes V-model very rigid and inflexible for complex artificial intelligent

systemdevelopment.

70

As pointed out in (Boehm 1988; Raccoon 1997; Black 2009), we should take a spiral loop to

findmost challenging test tasks. Because learning and testing are two sides of the same coin,

thearchitecture of such a powerful testing system should share a similar loop structure with

somecertainpowerful artificialintelligencelearning systems.

Let us take the recently proposed parallel learning framework (Li et al. 2017) as an example.

Asshown in Fig. 5a, parallel learning first applies descriptive learning to create the same (kind

of)new data. This is just as Prof. Richard Feynman had said: “What I cannot create, I do

notunderstand.” Then, parallel learning applies prescriptive learning to make system

evolveappropriately by special trying-and-testing and guide system with growing knowledge.

Finally,parallel learning applies predictive learning to label data-action pair and leads the system

toevolve in an unsupervised manner. The new action will generate new data and forms a loop

intheend.Thesystemwillfinally mastertheknowledgeof choosingthe appropriateactionsfor allthe

tested data. Such knowledge will be generalized to choose the actions for the untested data.Fig.

5

A comparison of a parallel learning loop (Li et al. 2017); and b testing loop for

artificialintelligence

Check the inner mechanism of AlphaGo, we can find that it indeed does the same thing.

Therules of Go game is first encoded (descriptive learning). The system sets up a deep

neuralnetworkbased policynetwork (prescriptivelearning) to learnhow tochooseamovein

thegame

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR6
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR70
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR5
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig5
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58

71

(the action). The Monte Carlo sampling based self-playing (predictive learning) Browne et

al.(2012)isused todeterminewhetherthemove(theaction)is correctand howtoupdate

thepolicynetwork.Such aspiral loop makes the system become better andbetter.

Followingasimilarlogic,anintelligentsystemforvehicleintelligencetest

exploresthespaceofstate,policy and state transitions inaloop as illustrated in Fig.5b.

Taskdescriptionpart solveshow togenerate new tasks fortesting.Themaingoal ofthis partisto set

up and refine a methodology, which can guide to set up environments for the followingtests.

For tasks in every scenario, the descriptor will break it down into several task atoms, andthen

function atoms and functionalities. The connection between these elements will bedescribedas

well.

Given detailed descriptions of tasks, task sampling part will explore the policy space to

choosechallengingtasks. There wereseveralways toreach thisgoal (Zhaoet al.2017; Evtimovet

al.2017).However,none oftheexistingapproachesisself-motivated.

To implement rapidly adaptive intelligence test, we consider challenging task sampling as

adecision process which can be formalized as a 4-tuple (S,A,P,R)(S,A,P,R). The state stst in

thisdecision process is the confidence we had on the performance of vehicle intelligence at

time tt,andthe action atat is thetesting procedures that we chooseto updateour

confidence.Pra(st,s′t+1)Pra(st,st+1′)denotesthe probabilitythatwechooseaspecifictaskwilllead

to another understanding level s′s′ from state ss, and the reward rtrt gives how

muchconfidencewegained at time tt.

Undersuchsetting,thelong-

termunderstandingofvehicleintelligencecanbeformalizedasVπ(s)=E(∑t=0∞rt|s,π).Vπ(s)=E(∑

t=0∞rt|s,π).

(1)

Thegoal oftask sampling partis to findan optimal policyπ∗π∗which canmaximizethe long-

termunderstanding
π∗=argmaxπVπ(s).π∗=argmaxπVπ(s).

(2)

With a detailed description of the task and sampling policy, testing (simulation) part can

finallysolve how to label testing results by actually generate the test scenarios and see how well

thevehicle intelligence can perform. Two kinds of relationships need to be labeled during

thisprocedure.Oneisthe

relationshipbetweenvehicleintelligenceanditsperformanceundercertainenvironments. The

evaluation of vehicle intelligence is the main output we want from anintelligenttest system,and

suchresults canhelp ussamplebetter tasksin thenext episode.

Another is the relationship between the test and real environments. Differences of

twoenvironments and behaviors of subjects (e.g., the characteristic of traffic situations and

featuresofvehicledynamics)needtobe paired,sothetask description

canbemoredetailedandrealisticin thenext loop.

Theabove frameworkof

intelligencetestingsystemforvehiclesisdesignedbasedonthefollowingconsiderations:

First, we can hardly know in advance whether intelligent vehicles will behave unless we

testthem. So, we cannot directly answer which task is most challenging. So, we need to

graduallybuild our knowledge of testing from zero knowledge state and adopt a prescriptive

learning style.Second, testing can actually be viewed as a self-labeling (prediction learning)

process. Since wedo not know the outcome of a special test, we have to wait and let the results

label whether thevehiclecan pass thetestor not.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR11
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig5
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR103
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR24

72

Third, it requires huge an amount of resources and a long time to cover most of

thefunctionalitiesthatavehicle intelligenceshouldhave.So, weneedtofind anefficientway

tomaximizethe long-termunderstanding of vehicle intelligence.

Wedonot restricttheimplementation detailsofsuch tasksamplingdecision problem.Wearenow

testing whether deep reinforcement learning needs to be used. We will write a dedicatedpaperto

report the progress in the near future.

Paralleltestingforvehicleintelligencetest

When the detailed task is assigned, simulation-based tests can then be applied for tests

ofintelligent vehicles. Researchers began to show interests in accurately reproducing

humanbehaviors(Wangetal.2017b).While,currently,mosteffortshadbeenputintogeneratingvirtuali

mage/video data as inputs of intelligent vehicles, since most information is collected by

visualsensors(Gaidonet al. 2016; Santanaand Hotz2016; Liu et al.2017).

Someapproachesfirstacceptedreal2Dimage/videodata,thenbuiltthecorresponding3Dobjectmodels

in rendering engines, and finally generated 2D virtual image/video data as sensing inputsof

intelligent vehicles (Gaidon et al. 2016; Richter et al. 2016; Greengard 2017). Some

otherapproaches directly employed GAN to generate new virtual 2D image/video data from

existingreal 2D image/video data (Santana and Hotz 2016; Gatys et al. 2016; Liu et al. 2017).

The latestapproach mixed these two methods to produce more virtual data as “real” as possible

and as“rich” aspossible(Veeravasarapuetal.2015;Wang etal. 2017a; Roset al.2016).

In this subsection, we propose a parallel system framework that combines real-world

andsimulation-world for vehicle intelligence test. As illustrated in Fig. 6, a vehicle intelligence

testcan be decomposed into three parts, the environment, the test planning part, and the

testperforming part. Following the logic we predicated in the last subsection, a parallel system

canbebuilt by connecting thesethreeparts.

Fig. 6

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR99
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR27
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR78
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR61
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR27
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR73
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR33
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR78
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR28
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR61
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR90
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR98
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR75
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig6

73

Ademonstrationofparallelsystemforvehicleintelligencetest

Theloopofintelligencetestinthe parallelsystemstarts fromareal environment,whichisanarea

withintersections,traffic signsandotherelements ofsomespecificdrivingscenarios.

Depending on the mission, a task description, which is a directed acyclic graph (DAG) can

firstbe initialized according to some prior knowledge. It breaks down the task into task

atoms,function atoms, and functionalities atoms. Then, it establishes the connection between

theseatoms. The weights of DAG are estimations of confidence gained by performing a certain

step.Basedonthedescription,anagentwillbetrainedtoplanthebestschedule oftasks.Forexample,if

there are two task atoms, traffic signs recognition and lane changing, the optimal agent willfind

that, the traffic signs recognition atoms can actually be neglected, since most of

theconfidencescanbegained byperformingthelane changingatom.Weighing theprosand consof

74

different routes in the DAG, the agent prunes some routes and picks important ones to

perform.The most important tasks will be checked in the real environments and the less

important oneswillbetested in simulation.

Once the schedule is provided, a special task can be tested. Depend on the confidence of

testaccuracyandtheimportanceof atom,wecancalculateaweightedscorebased ontheresultsinboth

real and simulative environments. Meanwhile, data generated in the real environment willbe

fed into the simulative environment, so the simulation can be improved continuously. Theloop

in the real system and the artificial system is asynchronous, and multiple loops can

beperformedin theartificial systemwhile oneloop in thereal environment.

Comparing totraditionalsimulativeenvironments,theparallel

systemforvehicleintelligencetesthastwomaindifferences.Firstof

all,theparallelsystemisnotmerelyareflectionoftherealsystem, but a combination of two systems

with equal status. Things happened in both systemswill affect each other and form a closed self-

boosting loop. Second, the parallel system is alearning system which can evolve over time.

Several key components in the artificial system(e.g., the task sampling agent and simulative

environment) are data-driven instead of arbitrarymodels.Such designs maketheparallel system

moreautonomous andquantifiable.

It should be pointed out that a prototype parallel intelligence testing system had already

beenbuilt in Changshu city, Jiangsu Province, China and had successfully supported the

2016 and2017IntelligentVehicle

FutureChallenge(IVFC).AsshowninFig.7,sometestingvehiclespassed a number of relatively

simple tasks but failed to do so when encountering the mostchallengingtask thathadbeen

foundin virtual testsin thevirtualparallel world.

Fig. 7

AdemonstrationofusingparallelsystemtofindthemostchallengingtaskDiscus

sions

Ethicalproblems

Most researchers, starting from Turing, have implicitly assumed that human will do the

rightthingstofinishthestudiedtasksandintelligent machinesshouldlearntodo thesameright thingto

finish the studied tasks. So, we only need to check whether intelligent machines do the

samethingsas human, during intelligencetest.

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig7

75

However, in some cases, even a human will feel difficult to know what should be done.

Onefamous case is the so-called trolley problem that has mulled for about 50 years. Suppose

arunaway trolley speeding down a track to which five people are tied. You can pull a lever

toswitchthetrolleytoanothertracktowhichonlyonepersonistied.Wouldyousacrificetheoneperson

to savethe other five, orlet the trolley kill thefivepeople?

Trolley problems caused much debate that we do not want to discuss in this paper. If we think

ofhumans as moral decision-makers and take artificial intelligent machines as moral agents

thatactually replace our capacities, we can hardly find a commonly accepted answer (Goodall

2014;Kumfer and Burgess 2015; Maurer et al. 2015; Thornton et al. 2017). If we assume

thatintelligent machines reason and act just what human had told them to do, the only decision-

makers are human but not intelligent machines. In this paper, all such problems involved

ethicaldecisionmakingarenotconsidered. As aresult,wedonotdiscusshow

todesignanyintelligencetest tasks forethics, sinceweshould pay to Caesarwhat belongs to Caesar–

and Godwhatbelongs toGod.

Real-timeandautomatedevaluationoftestingresults

One major difference between Turing test and the new approach of intelligence test is

theselectionofthejudge. Turingchosehumanto bethejudge

toarbitratewhetheramachinehasintelligence in Turing test; while many new intelligence

testing systems use machines toarbitrate. This is not only because we have a more clear

description of tasks in many recentlystudied intelligence test problems, but also because a

human is unable to accurately examinemanyresults of intelligencetest without thehelp

ofmachines.

Let us still use testing for intelligent vehicles as an example. To save time and money,

severalindependenttasksofanintelligentvehicleareoften

linkedalongaspecialpathofthevehicleandare tested sequentially in practice. For instance, a vehicle

needs to finish 14 tasks in 2017Intelligent Vehicle Future Challenge, including: (1) make U-turn,

(2) pass the signalized T-intersection, (3) pass the non-signalized cross-intersection, (4) pass

other vehicles, (5) pass thetunnel in which GPS is blocked, (6) recognize the stop sign dedicated

for vehicles and behaveappropriately,(7)passanotherstopsigndedicatedtoschoolchildren,

(8)giveway topedestrian,

(9) make a right-turn, (10) pass the rural road, (11) give way to bicycle, (12) pass the

workingzone,(13)recognizethe speedlimitandbehave

appropriately,(14)parkintotheassignedberth;seeFig.8for an illustration.

Fig. 8

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR30
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR47
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR64
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR87
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig8

76

Anillustrationofdifferenttest tasksfor2017 intelligentvehicle futurechallenge

Usually, we do not require the vehicle to stop after it passes a task. In order to achieve a real-

time and automated evaluation of the testing results for each individual task, researchers

hadused vehicle-to-everything (V2X) communications to connect the onboard sensors and

controlcenter, share a number of information of vehicle (e.g., position, speed, ac/deceleration

rate) andrapidlycalculatetheperformancevaluesofeach taskbasedonthecollectedinformation.Such

amethodreduces theburden of testingand becomes increasingly popular.

Figure 9gives a demonstration of the evaluation system designed by Tsinghua University

andQingdao VIPioneers company, for 2017 Intelligent Vehicle Future Challenge. The left

screensshow the real-time trajectories of 5 vehicles that were running in the Challenge and their

ranks.The right screens show the real-time monitoring video data collected from the cameras

that wereinstalled inside the tested vehicles, the cameras that were installed inside the following

arbitratorvehicles, and the roadside cameras. All the data were transferred to the testing center

via variousways, including V2X communication, 4G wireless communication, and optical

fibercommunication.

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig9

77

Fig. 9

A demonstration of the real-time automated evaluation system designed for vehicle

intelligencetestsof 2017 intelligent vehiclefuturechallenge(IVFC)

In 2009–2015 Intelligent Vehicle Future Challenges, human judges determine how to

evaluatethe performance of intelligent vehicles. Such manual evaluation is tedious, time-

consuming andprone to error. In Intelligent Vehicle Future Challenge 2017, most evaluations

were done bymachines based on the measured data collected from various resources.

Comparisons show thatthe evaluations became more accurate and much quicker. For example,

in the previous match,human judges stared at the dashboard to check whether the tested vehicle

is speeding. Based onthe high-resolution position information measured via BeiDou navigation

satellite system(Wang 2016a, b), we can easily reconstruct the whole trajectory of the tested

vehicle anddeterminewhenand wherethe vehicleis speeding.

For another example, Fig. 10gives a demonstration of the deep learning (LeCun et al.

2015;Goodfellowetal.2016)basedautomated

evaluationsystemdesignedtorecognizewhetherthevehiclehadcrossed thelaneboundaries (You

2017). This systemused YOLO(Redmonet

al. 2016; Redmon and Farhadi 2016) to recognize the tested vehicle, based on the video

datacollectedfromthejudgingvehiclethat followsthe testedvehicleall thewayalong.Itcan

helpcatch each incorrect crossing of the lane boundaries during the long-time running tests

andgreatlyrelievethe burdens of human judges.

Fig. 10

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR94
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR95
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig10
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR50
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR32
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR102
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR72
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR71

78

Ademonstrationoftheautomatedevaluation

systemdesignedtolanedeparturewarningHuman–machineintegrated testing

However,wedonotclaimthatweshouldremovehumanfromtestsofartificialintelligence.

Inthecurrent stage,humanparticipates inevery aspectof artificial intelligencetests.

First, human experts are heavily involved in the description of test tasks. Indeed, every test

isdescribed by a certain kind of language that is established by human. Till now, we do

notobserve any artificial intelligent machine generates its own language. The capability of

anintelligent machine and that of the corresponding testing system is constrained by

humandesigners,too.So,wealways resorttohumanexpertsto makesubstantive

improvementforthedesignand tests of artificial intelligence.

Second, human experts also help to design the most challenging tasks in many

intelligentapplications,accordingtotheirexperience

andintuitionthatisgainedthroughfinishingthesametasks. For example, researchers inquired human

drivers to set up different testing levels fordifferenttasksforintelligent vehicles (Zheng

etal.2017).

Third, human experts usually monitor the testing process and take the final responsibility

toguarantee that the testing results are correct. As shown in Fig. 8, the automated

evaluationsystem designed for 2017 Intelligent Vehicle Future Challenge provides real-time

visualizationfor human experts. This enables human experts to track the entire progress of

testing, monitorwhether the automated evaluation system works well, and gain an intuitive

understanding oftesting result. Such a hybrid-augmented intelligence (Zheng et al. 2017)

setting helps combinebothhuman andmachines tobetter evaluatethe

performanceofintelligentmachines.

It should be pointed out that, till now, human’s intelligence levels are tested via the

tasksdesigned by human experts (Sternberg and Davidson 1983; Sternberg 1985; Mackintosh

2011;Rindermann et al. 2016; Ohlsson et al. 2017). Can we use some tasks that generated by

machinesvia some technologies similar to what we had discussed above? We believe this

interestingquestionwill attract moreattention in thenear future.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR105
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig8
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR105
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR85
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR84
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR63
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR74
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR69

79

Testingasameasurementofintelligencelevel

SAE International defines the six levels of driving automation, from no automation to

fullautomation in 2016 (SAE J3016 2016). However, there is not a clear description of

thecorresponding test tasks. So, it becomes widely accepted that testing results for

intelligentvehicles can be viewed as a measurement of intelligence level. Only if a vehicle

passes all thetasks that are designed for a special level of driving automation, we can claim

that this vehiclehassuch an intelligencelevel.

Intelligent machines are becoming smarter and smarter now. Now, intelligent machines

hadbeaten all human players in Shogi, chess and Go games (Silver et al. 2017a, b). The AI

‘TopGun’ beat the military’s best pilots repeatedly. It is probably safe to say that all

artificialintelligenceresearchers

aimtodesignandimplementsomemachinesthatbeathumanincertainkinds of tasks, since

aeronautical engineers had shown that they can do something better thanmakingmachines fly

so exactly likepigeons (Russell and Norvig2010).

Maybe in the future, we should renew our definition of artificial intelligence as

“Artificialintelligence is intelligence (that is similar to, or the same kind as, or even superior to

humanintelligence) exhibited by machines (in the same task)”. At the current stage, human

experts arestill the major referring standard for tests of artificial intelligence. Sometimes in the

future, theperformancethatanintelligentmachinecouldachievewillserveasanew

evaluatingstandardofintelligencelevelinstead.

When we cannot enumerate all the test tasks, it becomes increasingly complex to set a

fairmeasurement of intelligence for two different artificial machines dedicated for the same

purpose.For example, in Go game, researchers used the Elo rating scores (Elo 1978; Coulom

2008; Silveret al. 2017b) that were computed from evaluation games between different players,

becauseconventional static rating systems do not consider time-varying strengths of players.

When theinformation that we can observe from the results is limited, things become even harder.

Asshown in the recent algorithms designed for the poker game, analyzing results indicated that

weneed to build special algorithms to drill the useful guide so as to boost the intelligent

machines(Moravčíketal.2017;BrownandSandholm2017).We

believethatmoreresearcheffortswillbeput into this researchdirection.

Explainabletestingofintelligent machines

Itshouldbealsopointedout that,justlike Turinghad done67years ago,wefocus

ontheoutsidebehaviors of human/machine rather than the inside mechanism that generates the

outsidebehaviors. If a machine has passed all the tasks according to its outside behaviors, we

admit itsintelligence in this special field. However, we usually know neither what the best way to

finishallthesetasks is, norhow human finish thesetasks.

Nowadays, intelligent algorithms and machines become more and more complex. Someone

iscalling them ‘black box’, since it becomes harder to interpret what these algorithms

andmachines are doing. However, intelligent machines coded in simple rules seem do not work

aswell as some state-of-the-art ‘black boxes’. Actually, if we assume that the latest

machinelearningtechnologyhas“theabilitytolearnfrom

testingresultsandimproveitselfautomaticallywithout being explicitly programmed, we may find

that these machines will be naturally hard tointerpret.Otherwise, we can turn them backto

explicit codes.

To the best of our knowledge, few studies give a widely-accepted generalizable way to

combineinside mechanism design with outside behavior validation of artificial intelligence. We

think thisnewdirection may bring some interestingfindings in the nearfuture.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR77
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR81
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR76
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR22
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR18
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR67
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR10

80

Testingasanessentialpartofartificialintelligencesoftwaredevelopmentprocess

Because artificial intelligence is coded and implemented on computers, we need to highlight

theimportance of software development of artificial intelligence. The lack of reproducibility

andreadability has already hindered the development of AI techniques, since researchers can

hardlyrelyon animplementation that canhardly beproofedor understood tofurther their research.

A proper design of AI development loop can help to alleviate such situation. Test-

drivendevelopment (TDD) has already been widely adopted in modern software development

process.The basic idea of TDD is to organize the development cycle as a repetition of a very

shortdevelopment cycle: First turn the requirements into very specific test cases, and then

improve thesoftwareto passthetests.In suchdevelopment process,thereliabilitycan beguaranteedif

wesetthe test properly, and the readability of software can be improved as well, since it is

organized asthecollection ofsimple componentsto each fulfillaspecificrequirement.

The development of AI software can be profited from such development methodology, if

somecritic problems are solved. Despite the unclear definition of requirements which can be

handledby the method we proposed in the last section, the major problem is the lack of testing

anddebugging tools. Software testing had already taken an essential part of software

development.Almost all state-of-the-art commercial software developing tools provide thorough

support fortesting at different phases (Huizinga and Adam 2007; Ammann and Jeff 2017).

However, mostcurrent software/toolbox for building artificial intelligence lacks convenient

testing tools anddebuggers. We wonder software/toolbox for building artificial intelligence

could be viewed asSoftware 2.0 (Karpathy 2017). We expect more attention could be drawn to

this important issue.Life-longlearning and life-long testing

Researchers are developing more and more powerful testing methods of artificial

intelligence,just like what they had done for design methods of artificial intelligence. However,

all thechanges take time to complete. Similar to the evolutionary history of machine learning, it

seemsthat machine testing will take a relatively long time to become strong enough to

characterizewhat a truly intelligent machine should be. We cannot give a precise prediction of

the time whenan intelligent vehicle can drive in all kinds of situations. So, we borrow the term

“life-long” fromlife-longlearning(ChenandLiu 2016)andname thisevolutionprocessas“life-

longtesting”.

Moreover, it should be emphasized that we should always take the design and testing

ofintelligentvehicleas awhole. Theknowledgeoftesting willbefedback tothe

designpartofintelligent vehicle and will be used to further improve the intelligence of

intelligent vehicles.Such a spiral loop helps make intelligent vehicle into practice in every

automobile lab andmanufactory.

In precision machining industry, we continuously employ low-level machines to build

moreprecisehigh-levelmachines.About 400 years ago,wecanonlymakesome

simplegadgets.Now,we had achieved a great success and become able to make many complex

things like CPU andGPU. Similarly, in artificial intelligence research field, smart machines are

used to build evensmarter machines now. Fortunately, we are now witnessing such a great

change in artificialintelligencedevelopment.

Testingasaneconomical opportunity

The ongoing artificial-intelligence revolution brings changes in enormous social lives

andeconomic opportunities (Harari 2017). Humans are pushed out of some part of the job

market byintelligent machines (Fagnant and Kockelman 2015; Fisher et al. 2016). For example,

someaggressiveresearchers advocatedto totallyreplacehumandrivers inthenearfuture.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR39
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR2
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR42
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR15
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR35
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR25
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR26

81

Meanwhile, AI generates a wide range of new jobs, including some new jobs for tests of

AI.Using crowdsourcing(Wanget al.2016b), we canhirea numberofhumantolabel the videodata

collected in streets and plot the bounding boxes of vehicles/pedestrians, since we needground

truth data to train the artificial intelligent systems for environment recognition

andautonomousdriving.Severalcompanies inChinahadhired alotofretiredpeople todosuchjobsand

gained gigabytes of useful in return. We hope that, in the future, many people who had

beenreplacedbyintelligent machinescould jointhebuildingprocess ofmoreintelligentmachines.

Thisalsorequires ustobuild moreflexibleand powerfulsoftware,

likeCompletelyAutomatedPublic Turing test to tell Computers and Humans Apart

(CAPTCHA) (von Ahn et al. 2003;Georgeet al. 2017).

Crowdsourcing also leads to new risks of AI developing and testing. Tencent company

hadrecently announced a critical vulnerability of Google’s TensorFlow. Such vulnerability

alloweshackers accessto AIcodebeingwrittenby programmers,jeopardizethetraining

data,orconfusethe testing results (Liao 2017). So, we have to make far more efforts to make

distributed tests ofartificialintelligenceintopractice.

Conclusions

In this paper, we discuss four major difficulties of carrying out the test of artificial

intelligence,withaspecial emphasison theroleoftaskin intelligencetest.Wealsopresent

ourexperiencesindesigningreliable intelligencetest for intelligent vehicles.

We explain our design of intelligence test by analogy with the structure of machine

learningframework. The origin of this similarity lies in the fact that learning and testing are

indeed

twofacesofartificialintelligence.Fromthisviewpoint,weexplainwhyaparallelsystemframeworkforv

ehicleintelligencetestis needed.Such aframework shouldhavetwoimportant features.

First,thewholetestingshouldbe formulatedasa loopbetween threeparts:

taskdescription,tasksampling and task testing (simulation). This formulation allows us to

gradually build ourknowledge of testing results and automatically finds the most challenging

tasks to test. Second,the simulation tests should be executed in a mirror system so that we can

produce more virtualdata as “real” as possible and as “rich” as possible. This will help us reduce

both the time andfinancialcosts of testing.

However,theevolutionofartificialintelligenceonlyhelpstoreducehuman participation fromsome

parts but not the core of artificial intelligence test. We still do not have an intelligentmachine

can self-test, self-boost and upgrade without the help of human. The singularity of

AI(Vinge1993; Kurzweil2005)is yet to come.

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR97
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR92
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR29
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR59
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR91
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR48

