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List of Experiments: 

1. Write a program to conduct uninformed search. 

2. Write a program to conduct informed search. 

3. Write a program to conduct game search. 

4. Write a program to construct a Bayesian network from given data. 

5. Write a program to infer from the Bayesian network. 

6. Write a program to illustrate Hidden Markov Model. 

7. Write a program to run value and policy iteration in a grid world. 

8. Write a program to do reinforcement learning in a grid world. 

9. Write a program to implement adaptive dynamic programming. 

10. Write a program to implement active dynamic programming.  

11. Write a program to implement Q learning.  

12. Case Study 

 
 
 

CO- PO, PSO Mapping 

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak 

COs 
Programme Outcomes (POs) PSOs 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 

CO1 2 3 1         2 1   

CO2 2 2          2 2   

CO3 1 2          1 1   
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1. Write a program to conduct uninformed search. 

       DFS(depth first search) 

 

        from collections import defaultdict 

 

class Graph: 

    # Constructor 

    def __init__(self): 

        # Default dictionary to store the graph 

        self.graph = defaultdict(list) 

 

    # Function to add an edge to the graph 

    def addEdge(self, u, v): 

        self.graph[u].append(v) 

 

    # A function used by DFS 

    def DFSUtil(self, v, visited): 

        # Mark the current node as visited and print it 

        visited.add(v) 

        print(v, end=' ') 

 

        # Recur for all the vertices adjacent to this vertex 

        for neighbour in self.graph[v]: 

            if neighbour not in visited: 

                self.DFSUtil(neighbour, visited) 

 

    # The function to do DFS traversal. It uses recursive DFSUtil() 

    def DFS(self, v): 

        # Create a set to store visited vertices 

        visited = set() 

        # Call the recursive helper function to print DFS traversal 

        self. DFSUtil(v, visited) 

 

# Driver code 

# Create a graph given in the above diagram 

g = Graph() 

g.addEdge(0, 1) 

g.addEdge(0, 2) 

g.addEdge(1, 2) 

g.addEdge(2, 0) 

g.addEdge(2, 3) 

g.addEdge(3, 3) 

 

print("Following is DFS from (starting from vertex 2):") 

g.DFS(2) 
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Output: 

 

 
 
 

#Breadth first search 
 
 
 

from collections import defaultdict 

 

class Graph: 

    # Constructor 

    def __init__(self): 

        # Default dictionary to store the graph 

        self.graph = defaultdict(list) 

 

    # Function to add an edge to the graph 

    def addEdge(self, u, v): 

        self.graph[u].append(v) 

 

    # Function to print a BFS of the graph 

    def BFS(self, s): 

        # Mark all the vertices as not visited 

        visited = [False] * (max(self.graph) + 1) 

 

        # Create a queue for BFS 

        queue = [] 

 

        # Mark the source node as visited and enqueue it 

        queue.append(s) 

        visited[s] = True 

 

        while queue: 

            # Dequeue a vertex from the queue and print it 

            s = queue.pop(0) 

            print(s, end=" ") 

 

            # Get all adjacent vertices of the dequeued vertex s. 

            # If an adjacent has not been visited, then mark it visited and enqueue it 

            for i in self.graph[s]: 

                if not visited[i]: 

                    queue.append(i) 

                    visited[i] = True 
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# Driver code 

# Create a graph given in the above diagram 

g = Graph() 

g.addEdge(0, 1) 

g.addEdge(0, 2) 

g.addEdge(1, 2) 

g.addEdge(2, 0) 

g.addEdge(2, 3) 

g.addEdge(3, 3) 

 

print("Following is Breadth-First Traversal (starting from vertex 2):") 

g.BFS(2) 

Output: 

 

 
2.program to conduct informed search. 

#BestFirstSearch 

from queue import PriorityQueue 

 

v = 14 

graph = [[] for _ in range(v)] 

 

# Function for Implementing Best-First Search 

# Gives output path having the lowest cost 

def best_first_search(source, target, n): 

    visited = [0] * n 

    visited[source] = True 

    pq = PriorityQueue() 

    pq.put((0, source)) 
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    while not pq.empty(): 

        u = pq.get()[1] 

        # Displaying the path having the lowest cost 

        print(u, end="") 

        if u == target: 

            break 

 

        for v, c in graph[u]: 

            if not visited[v]: 

                visited[v] = True 

                pq.put((c, v)) 

    print() 

 

# Function for adding edges to graph 

def add_edge(x, y, cost): 

    graph[x].append((y, cost)) 

    graph[y].append((x, cost)) 

 

# The nodes shown in the above example (by alphabets) are implemented using integers 

add_edge(0, 1, 3) 

add_edge(0, 2, 6) 

add_edge(0, 3, 5) 

add_edge(1, 4, 9) 

add_edge(1, 5, 8) 

add_edge(2, 6, 12) 

add_edge(2, 7, 14) 

add_edge(3, 8, 7) 
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add_edge(8, 9, 5) 

add_edge(8, 10, 6) 

add_edge(9, 11, 1) 

add_edge(9, 12, 10) 

add_edge(9, 13, 2) 

 

source = 0 

target = 9 

best_first_search(source, target, v) 

 

 

Output: 

 

013289 

 
 
 
 
 
 
 
 
 
 

3.program to conduct gamesearch 

 

# Tic-Tac-Toe Program  

# importing all necessary 

librariesimport numpy as np 
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Import random 

 
From time import sleep 

 
# Creates an empty 

boarddefcreate_board(): 

return(np.array([[0,0,0], 

 
[0, 0,0], 

 
[0,0,0]])) 

 

#Checkforemptyplacesonboarddefpossibili

ties(board):l=[] 

for i in 

range(len(board)):forjinrange(l

en(board)): 

if board[i][j] == 

0:l.append((i,j)) 

return(l) 

 

 
# Select a random place for the 

playerdefrandom_place(board, player): 

selection = possibilities(board)current_loc = 

random.choice(selection)board[current_loc] 

= playerreturn(board) 
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# Checks whether the player has three# of 

their marks in a horizontal 

rowdefrow_win(board, player): 

for x in range(len(board)):True 

for y in 

range(len(board)):ifboard[x,y

] !=player: 

win=Falsecontinue 

ifwin==True:return(win) 

return(win) 

 
# Checks whether the player has three#of 

their marksin avertical row 

def col_win(board, 

player):forxinrange(len(board)): 

win=True 

 
for y in 

range(len(board)):ifboard[y][x

]!=player: 

win=Falsecontinue 

ifwin==True:return(win) 

return(win) 
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# Checks whether the player has three#of 

their marks inadiagonal row 

def diag_win(board, 

player):win=True 

y =0 

 
for x in 

range(len(board)):ifboard[x,x

] !=player: 

win=Falseifwin: 

return 

winwin=Trueifwi

n: 

for x in 

range(len(board)):y=len(boar

d)-1-x 

if board[x, y] != 

player:win=False 

return win 

 
# Evaluates whether there 

is#awinner or atie 

def 
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evaluate(board):winner

=0 

forplayerin [1,2]: 

 
if (row_win(board, player) 

orcol_win(board,player) 

ordiag_win(board,player)): 

winner=player 

 
if np.all(board != 0) and 

winner==0:winner=-1 

return winner 

 
# Main function to start the 

gamedefplay_game(): 

board, winner, counter = create_board(), 0, 

1print(board) 

sleep(2) 

 
while winner == 

0:forplayerin[1,2]: 

board = random_place(board, player)print("Board 

after " + str(counter) + " move")print(board) 

sleep(2)counter+=1 

winner = evaluate(board)if 
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winner!=0: 

breakreturn(

winner) 

#DriverCode 

 
print("Winneris:"+str(play_game())) 

 
 

Output: 

[[000] 

[0 00] 

[00 0]] 

Board after 1 

move[[000] 

[0 00] 

[10 0]] 

Board after 2 

move[[000] 

[0 20] 

[10 0]] 

Board after 3 

move[[010] 

[0 20] 

[10 0]] 

Boardafter4 

move[[0 10] 

[2 20] 

[10 0]] 

Boardafter5 

move[[1 10] 

[2 20] 

[10 0]] 
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Boardafter6 

move[[1 10] 

[2 20] 

[12 0]] 

Boardafter7 

move[[1 10] 

[2 20] 

[12 1]] 

Boardafter8 

move[[1 10] 

[2 22] 

[12 1]] 

Winneris: 2 

 

 

 

 

 

 

 

 

 

 
4.Write a program toconstructa Bayesiannetwork from givendata. 

  

1. age:ageinyears 

2. sex:sex(1=male;0= female) 

3. cp:chestpaintype 

Value 1: typical 

anginaValue 2: atypical 

anginaValue3:non-

anginalpainValue4:asym

ptomatic 

4. trestbps:restingblood pressure(in mmHg onadmission tothehospital) 

5. chol:serumcholestoral inmg/dl 

6. fbs:(fasting bloodsugar >120 mg/dl)(1 =true; 0= false) 

7. restecg:restingelectrocardiographicresultsV
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alue0: normal 

Value1:havingST-

Twaveabnormality(Twaveinversionsand/orSTelevationordepression 

of>0.05mV) 

Value2:showingprobableordefiniteleftventricularhypertrophybyEstes'criteria 

8. thalach:maximumheartrateachieved 

9. exang:exercise induced angina(1 =yes;0 = no) 

10. oldpeak=STdepressioninducedbyexerciserelativetorest11.sl

ope:theslope ofthepeak exercise ST segment 

Value1:upsloping 

Value2:flat 

Value3:downsloping 

12. ca=number ofmajorvessels(0-3) colored byflourosopy 

13. thal:3= normal;6=fixeddefect;7 =reversabledefect 

14. Heartdisease: Itisinteger valued 

from0(nopresence)to4.Diagnosisofheartdisease(angiographicdiseasestatus) 

Someinstancefromthedataset: 

Age sex cp trestbps chol fbs restecg thalach exang oldpeakslopecathal Heartdisease 

63 1 1 145 233 1 2 150 0 2.3 3 0 6 0 

67 1 4 160286 0 2 108 1 1.5 2 3 3 2 

67 1 4 120 229 0 2 129 1 2.6 2 2 7 1 

41 0 2 130 204 0 2 172 0 1.4 1 0 3 0 

62 0 4 140 268 0 2 160 0 3.6 3 2 3 3 

60 1 4 130 206 0 2 132 1 2.4 2 2 7 4 
 

 

 

 

 

 

 

Program: 

 

import numpy as 

npimportcsv 

importpandasaspd 

frompgmpy.modelsimportBayesianModel 

frompgmpy.estimatorsimportMaximumLikelihoodEstimatorfr

ompgmpy.inferenceimportVariableElimination 

#read Cleveland Heart Disease 

dataheartDisease = 

pd.read_csv('heart.csv')heartDisease=heartDis

ease.replace('?',np.nan)#displaythedata 

print('Fewexamplesfromthedatasetaregivenbelow')prin

t(heartDisease.head()) 

#Model Bayesian 

NetworkModel=BayesianModel([('age','trestbps'),('age','fbs'), 
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('sex','trestbps'),('exang','trestbps'),('trestbps','heartdise 

ase'),('fbs','heartdisease'),('heartdisease','restecg'), 

('heartdisease','thalach'),('heartdisease','chol')])#Learning

CPDsusingMaximumLikelihoodEstimators 

print('\n Learning CPD using Maximum likelihood 

estimators')model.fit(heartDisease,estimator=MaximumLikelihoo

dEstimator) #Inferencing with Bayesian Network 

print('\nInferencing withBayesian 

Network:')HeartDisease_infer = 

VariableElimination(model)#computing the 

Probability of HeartDisease given 

Ageprint('\n1.ProbabilityofHeartDiseasegiven 

Age=30') 

q=HeartDisease_infer.query(variables=['heartdisease'],evidence 

={'age':28}) 

print(q['heartdisease']) 

#computing the Probability of HeartDisease given 

cholesterolprint('\n 2. Probability of HeartDisease given 

cholesterol=100')q=HeartDisease_infer.query(variables=['heartdis

ease'],evidence 

={'chol':100}) 

print(q['heartdisease']) 
 

 

 

Output: 

Fewexamplesfromthedatasetaregivenbelowage 

sex cp trestbps ...slope ca thal heartdisease0 63 

1 1 145 ... 3 0 6 0 

1 67 1 4 160 ... 2 3 3 2 

2 67 1 4 120... 2 2 7 1 

3 37 1 3 130 ... 3 0 3 0 

4 41 0 2 130 ... 1 0 3 0 

[5rowsx14columns] 

Learning CPD using Maximum likelihood 

estimatorsInferencingwith Bayesian Network: 

1. ProbabilityofHeartDiseasegivenAge=28 

╒════════════════╤═════════════════════╕ 

│heartdisease│phi(heartdisease)│ 

╞════════════════╪═════════════════════╡ 

│heartdisease_0│0.6791│ 

├────────────────┼─────────────────────┤ 

│heartdisease_1│0.1212│ 

├────────────────┼─────────────────────┤ 

│heartdisease_2│0.0810│ 

├────────────────┼─────────────────────┤ 

│heartdisease_3│0.0939│ 

├────────────────┼─────────────────────┤ 

│heartdisease_4│0.0247│ 

╘════════════════╧═════════════════════╛ 
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2. ProbabilityofHeartDiseasegiven cholesterol=100 

╒════════════════╤═════════════════════╕ 

│heartdisease│phi(heartdisease)│ 

╞════════════════╪═════════════════════╡ 

│heartdisease_0│0.5400│ 

├────────────────┼─────────────────────┤ 

│heartdisease_1│0.1533│ 

├────────────────┼─────────────────────┤ 

│heartdisease_2│0.1303│ 

├────────────────┼─────────────────────┤ 

│heartdisease_3│0.1259│ 

├────────────────┼─────────────────────┤ 

│heartdisease_4│0.0506│ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.Write a program to infer from the Bayesian network. 
 

from pgmpy.models import BayesianNetwork 

from pgmpy.factors.discrete import TabularCPD 

from pgmpy.inference import VariableElimination 

 

# Define the structure of the Bayesian network 

model = BayesianNetwork([('A', 'C'), ('B', 'C')]) 

 

# Define the conditional probability distributions (CPDs) 

cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.6], [0.4]]) 

cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.7], [0.3]]) 

cpd_c = TabularCPD(variable='C', variable_card=2,  

                   values=[[0.8, 0.9, 0.7, 0.1], [0.2, 0.1, 0.3, 0.9]], 

                   evidence=['A', 'B'], evidence_card=[2, 2]) 

 

# Add CPDs to the model 

model.add_cpds(cpd_a, cpd_b, cpd_c) 

 

# Perform inference 
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inference = VariableElimination(model) 

# Computing the probability of C given evidence for A=1 and B=0 

query = inference.query(variables=['C'], evidence={'A': 1, 'B': 0}) 

print(query) 

 

output: 

 
+------+----------+ 

| C    |   phi(C) | 

+======+==========+ 

| C(0) |   0.7000 | 

+------+----------+ 

| C(1) |   0.3000 | 

+------+----------+ 

 

 

 

 

 

 

 

6.Write a program to illustrate HiddenMarkovModel. 

 

import numpy as np 

import pandas as pd 

 

class ProbabilityVector: 

    def __init__(self, probabilities: dict): 

        states = probabilities.keys() 
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        probs = probabilities.values() 

 

        assert len(states) == len(probs), "The probabilities must 

match the states." 

        assert len(states) == len(set(states)), "The states must be 

unique." 

        assert abs(sum(probs) - 1.0) < 1e-12, "Probabilities must 

sum up to 1." 

        assert len(list(filter(lambda x: 0 <= x <= 1, probs))) == 

len(probs), "Probabilities must be numbers from [0, 1] 

interval." 

 

        self.states = sorted(probabilities) 

        self.values = np.array(list(map(lambda x: probabilities[x], 

self.states))).reshape(1, -1) 

 

    @classmethod 

    def initialize(cls, states: list): 

        size = len(states) 

        rand = np.random.rand(size) / (size ** 2) + 1 / size 

        rand /= rand.sum(axis=0) 

        return cls(dict(zip(states, rand))) 

 

    @classmethod 
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    def from_numpy(cls, array: np.ndarray, states: list): 

        return cls(dict(zip(states, list(array)))) 

 

    @property 

    def dict(self): 

        return {k: v for k, v in zip(self.states, 

list(self.values.flatten()))} 

 

    @property 

    def df(self): 

        return pd.DataFrame(self.values, columns=self.states, 

index=['probability']) 

 

    def __repr__(self): 

        return "P({})={}".format(self.states, self.values) 

 

    def __eq__(self, other): 

        if not isinstance(other, ProbabilityVector): 

            raise NotImplementedError 

        if (self.states == other.states) and (self.values == 

other.values).all(): 

            return True 

        return False 
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    def __getitem__(self, state: str) -> float: 

        if state not in self.states: 

            raise ValueError("Requesting unknown probability 

state from vector.") 

        index = self.states.index(state) 

        return float(self.values[0, index]) 

 

    def __mul__(self, other) -> np.ndarray: 

        if isinstance(other, ProbabilityVector): 

            return self.values * other.values 

        elif isinstance(other, (int, float)): 

            return self.values * other 

        else: 

            raise NotImplementedError 

 

    def __rmul__(self, other) -> np.ndarray: 

        return self.__mul__(other) 

 

    def __matmul__(self, other) -> np.ndarray: 

        if isinstance(other, ProbabilityMatrix): 

            return self.values @ other.values 

 

    def __truediv__(self, number) -> np.ndarray: 

        if not isinstance(number, (int, float)): 
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            raise NotImplementedError 

        x = self.values 

        return x / number if number != 0 else x / (number + 1e-

12) 

 

    def argmax(self): 

        index = self.values.argmax() 

        return self.states[index] 

 

 

a1 = ProbabilityVector({'rain': 0.7, 'sun': 0.3}) 

a2 = ProbabilityVector({'sun': 0.1, 'rain': 0.9}) 

print(a1.df) 

print(a2.df) 

 

print("Comparison:", a1 == a2) 

print("Element-wise multiplication:", a1 * a2) 

print("Argmax:", a1.argmax()) 

print("Getitem:", a1['rain']) 
 

OUTPUT 

 

rain  sun 

probability   0.7  0.3 

             rain  sun 

probability   0.9  0.1 

Comparison: False 

Element-wise multiplication: [[0.63 0.03]] 

Argmax: rain 

Getitem: 0.7 
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7. Write a program to run valuea nd policy iteration in agrid world. 
 

 import numpy as np 

import matplotlib.pyplot as plt 

 

class GridWorld(object): 

    def __init__(self, gridSize, items): 

        self.step_reward = -1 

        self.m = gridSize[0] 

        self.n = gridSize[1] 

        self.grid = np.zeros(gridSize) 

        self.items = items 

        self.state_space = list(range(self.m * self.n)) 

        self.action_space = {'U': -self.m, 'D': self.m, 'L': -1, 'R': 1} 

        self.actions = ['U', 'D', 'L', 'R'] 

        self.P = self.int_P() 

 

    def int_P(self): 

        P = {} 

        for state in self.state_space: 
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            for action in self.actions: 

                reward = self.step_reward 

                n_state = state + self.action_space[action] 

                if n_state in self.items.get('fire').get('loc'): 

                    reward += self.items.get('fire').get('reward') 

                elif n_state in self.items.get('water').get('loc'): 

                    reward += self.items.get('water').get('reward') 

                elif self.check_move(n_state, state): 

                    n_state = state 

                P[(state ,action)] = (n_state, reward) 

        return P 

 

    def check_terminal(self, state): 

        return state in self.items.get('fire').get('loc') + self.items.get('water').get('loc') 

 

    def check_move(self, n_state, oldState): 

        if n_state not in self.state_space: 

            return True 

        elif oldState % self.m == 0 and n_state % self.m == self.m - 1: 

            return True 

        elif oldState % self.m == self.m - 1 and n_state % self.m == 0: 

            return True 

        else: 

            return False 

 

def print_v(v, grid): 

    v = np.reshape(v, (grid.n, grid.m)) 

    cmap = plt.cm.get_cmap('Greens', 10) 

    norm = plt.Normalize(v.min(), v.max()) 

    rgba = cmap(norm(v)) 

    for w in grid.items.get('water').get('loc'): 

        idx = np.unravel_index(w, v.shape) 

        rgba[idx] = 0.0, 0.5, 0.8, 1.0 

    for f in grid.items.get('fire').get('loc'): 

        idx = np.unravel_index(f, v.shape) 

        rgba[idx] = 1.0, 0.5, 0.1, 1.0 

    fig, ax = plt.subplots() 

    im = ax.imshow(rgba, interpolation='nearest') 

    for i in range(v.shape[0]): 

        for j in range(v.shape[1]): 

            if v[i, j] != 0: 

                text = ax.text(j, i, v[i, j], ha="center", va="center", color="w") 

    plt.axis('off') 

    plt.show() 

 

def print_policy(v, policy, grid): 

    v = np.reshape(v, (grid.n, grid.m)) 

    policy = np.reshape(policy, (grid.n, grid.m)) 

    cmap = plt.cm.get_cmap('Greens', 10) 

    norm = plt.Normalize(v.min(), v.max()) 

    rgba = cmap(norm(v)) 

    for w in grid.items.get('water').get('loc'): 

        idx = np.unravel_index(w, v.shape) 

        rgba[idx] = 0.0, 0.5, 0.8, 1.0 
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    for f in grid.items.get('fire').get('loc'): 

        idx = np.unravel_index(f, v.shape) 

        rgba[idx] = 1.0, 0.5, 0.1, 1.0 

    fig, ax = plt.subplots() 

    im = ax.imshow(rgba, interpolation='nearest') 

    for i in range(v.shape[0]): 

        for j in range(v.shape[1]): 

            if v[i, j] != 0: 

                text = ax.text(j, i, policy[i, j], ha="center", va="center", color="w") 

    plt.axis('off') 

    plt.show() 

 

def interate_values(grid, v , policy, gamma, theta): 

    converged = False 

    i = 0 

    while not converged: 

        DELTA = 0 

        for state in grid.state_space: 

            i += 1 

            if grid.check_terminal(state): 

                v[state] = 0 

            else: 

                old_v = v[state] 

                new_v = [] 

                for action in grid.actions: 

                    (n_state, reward) = grid.P.get((state, action)) 

                    new_v.append(reward + gamma * v[n_state]) 

                v[state] = max(new_v) 

                DELTA = max(DELTA, np.abs(old_v - v[state])) 

        converged = True if DELTA < theta else False 

 

        for state in grid.state_space: 

            i += 1 

            new_vs = [] 

            for action in grid.actions: 

                (n_state, reward) = grid.P.get((state, action)) 

                new_vs.append(reward + gamma * v[n_state]) 

            new_vs = np.array(new_vs) 

            best_action_idx = np.where(new_vs == new_vs.max())[0] 

            policy[state] = grid.actions[best_action_idx[0]] 

    print(i, 'iterations of state space') 

    return v, policy 

 

if __name__ == '__main__': 

    grid_size = (5, 5) 

    items = {'fire': {'reward': -10, 'loc': [12]}, 

             'water': {'reward': 10, 'loc': [18]}} 

    gamma = 1.0 

    theta = 1e-10 

    v = np.zeros(np.prod(grid_size)) 

    policy = np.full(np.prod(grid_size), 'n') 

    env = GridWorld(grid_size, items) 

    v, policy = interate_values(env, v, policy, gamma, theta) 

    print_v(v, env) 
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    print_policy(v, policy, env) 

 
 

Output: 
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8.Write a program to do reinforcement learning in a grid world. 
 

import numpy as np 
 

# global 

variablesBOARD_ROWS=3 

BOARD_COLS=4 

WIN_STATE= (0,3) 

LOSE_STATE=(1,3) 

START = (2, 

0)DETERMINISTIC=Tru

e 

classState: 

definit(self,state=START): 

self.board=np.zeros([BOARD_ROWS,BOARD_COLS])s

elf.board[1,1] =-1 

self.state = 

stateself.isEnd=F

alse 

self.determine=DETERMINISTIC 
 

defgiveReward(self): 

ifself.state==WIN_STATE:r

eturn1 

elif self.state == 

LOSE_STATE:return-1 

else: 

return0 
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defisEndFunc(self): 

if(self.state==WIN_STATE)or(self.state==LOSE_STATE):self.isEn

d=True 
 

defnxtPosition(self,action):"

"" 

action:up, down,left, right 
 

0 |1|2|3| 

1| 

2| 

returnnextposition"

"" 

ifself.determine: 

ifaction=="up": 

nxtState=(self.state[0]-

1,self.state[1])elifaction =="down": 

nxtState = (self.state[0] + 1, 

self.state[1])elifaction =="left": 

nxtState = (self.state[0], self.state[1] - 

1)else: 

nxtState = (self.state[0], self.state[1] + 

1)#if next state legal 

if(nxtState[0] >=0)and(nxtState[0]<=(BOARD_ROWS-

1)):if(nxtState[1]>=0)and(nxtState[1]<=(BOARD_COLS -1)): 

ifnxtState!=(1,1):re

turn nxtState 

returnself.state 
 

def 

showBoard(self):self.board

[self.state]=1 

for i in range(0, 

BOARD_ROWS):print(' ') 

out= '|' 

forjinrange(0,BOARD_COLS):ifs

elf.board[i, j] ==1: 

token='*' 

ifself.board[i,j]==-

1:token='z' 

ifself.board[i,j]==0:to

ken ='0' 

out+=token+'|'pri

nt(out) 

print(' ') 
 

#Agent ofplayer 
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classAgent: 
 

definit(self):self.s

tates=[] 

self.actions = ["up", "down", "left", 

"right"]self.State=State() 

self.lr=0.2 

self.exp_rate=0.3 
 

# initial state 

rewardself.state_valu

es={} 

for i in 

range(BOARD_ROWS):forjinr

ange(BOARD_COLS): 

self.state_values[(i,j)]=0  #set initial valueto 0 
 

defchooseAction(self): 

#chooseactionwithmostexpectedvaluemx

_nxt_reward =0 

action="" 
 

if np.random.uniform(0, 1) <= 

self.exp_rate:action=np.random.choice(se

lf.actions) 

else: 

#greedy action 

forain self.actions: 

#iftheactionis deterministic 

nxt_reward = 

self.state_values[self.State.nxtPosition(a)]ifnxt_reward 

>=mx_nxt_reward: 

action=a 

mx_nxt_reward = 

nxt_rewardreturnaction 
 

deftakeAction(self,action): 

position = 

self.State.nxtPosition(action)returnStat

e(state=position) 
 

def 

reset(self):self.stat

es = 

[]self.State=State(

) 

defplay(self,rounds=10):i

= 0
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whilei <rounds: 

#totheendofgamebackpropagaterewardifsel

f.State.isEnd: 

#back propagate 

reward=self.State.giveReward() 

# explicitly assign end state to reward 

valuesself.state_values[self.State.state] = reward# this is 

optionalprint("GameEnd Reward", reward) 

forsinreversed(self.states): 

reward=self.state_values[s]+self.lr *(reward -

self.state_values[s])self.state_values[s]=round(reward, 3) 

self.reset()

i +=1 

else: 

action = 

self.chooseAction()#append 

trace 

self.states.append(self.State.nxtPosition(action)) 

print("currentposition{}action{}".format(self.State.state,action))#b

y taking the action, itreaches the nextstate 

self.State=self.takeAction(action)# 

mark is endself.State.isEndFunc() 

print("nxtstate",self.State.state)p

rint(" ") 

defshowValues(self): 

for i in range(0, 

BOARD_ROWS):print('

 ')

out = '|' 

forj inrange(0, BOARD_COLS): 

out+=str(self.state_values[(i,j)]).ljust(6)+' 

|'print(out) 

print(' ') 

ifname == 

"main":ag=Agent() 

ag.play(50)print(ag.sho

wValues()) 

Output: 

|0.951|0.969|0.991|1.0 
 

|0.933|0|0.563|-1.0
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|0.781|0.184|-0.025| -0.2 
 

 

 

9.Write a program to implement adaptive dynamic programming. 
 

import libraries 

import os 

import random 

import gym 

import copy 

import pickle 

import numpy as np 

import matplotlib.pyplotaspl 

t#Plot values 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defplot_values(V): 
 

#reshapevaluefunction 

V_sq=np.reshape(V,(8,8))#pl

otthestate-valuefunction 

fig=plt.figure(figsize=(10,10))a

x=fig.add_subplot(111) 

im=ax.imshow(V_sq,cmap='cool')for(j

,i),labelinnp.ndenumerate(V_sq): 

ax.text(i, j, np.round(label, 5), ha='center', va='center', 

fontsize=12)plt.tick_params(bottom='off',left='off',labelbottom='off',lab

elleft='off')plt.title('State-ValueFunction') 

plt.show() 

#Performapolicyevaluation 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynbdef

policy_evaluation(env,policy,gamma=1,theta=1e-8): 

V=np.zeros(env.nS)

whileTrue: 

delta=0 

fors in range(env.nS): 

Vs=0 

fora,action_probinenumerate(policy[s]): 

forprob,next_state,reward,doneinenv.P[s][a]: 

Vs += action_prob * prob * (reward + gamma * 

V[next_state])delta=max(delta, np.abs(V[s]-Vs)) 

V[s]=Vs 

ifdelta<theta: 
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break

returnV 

#Performpolicyimprovement 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defpolicy_improvement(env, V, gamma=1): 

policy=np.zeros([env.nS,env.nA])/env.nAfor

s in range(env.nS): 

q=q_from_v(env,V,s,gamma) 
 

#OPTION1:constructadeterministicpolicy#po

licy[s][np.argmax(q)]=1 
 

#OPTION2:constructastochasticpolicy 

thatputsequalprobabilityonmaximizingactions 

best_a=np.argwhere(q==np.max(q)).flatten() 

policy[s]=np.sum([np.eye(env.nA)[i] foriinbest_a],axis=0)/len(best_a) 
 

returnpolicy 

#Obtain qfrom V 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defq_from_v(env, V, s,gamma=1): 

q = 

np.zeros(env.nA)forai

nrange(env.nA): 

for prob, next_state, reward, done in 

env.P[s][a]:q[a]+=prob* (reward+gamma* 

V[next_state]) 

returnq 

#Performpolicyiteration 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defpolicy_iteration(env,gamma=1,theta=1e-8): 

policy=np.ones([env.nS,env.nA])/env.nAwh

ileTrue: 

V=policy_evaluation(env,policy,gamma,theta)ne

w_policy=policy_improvement(env, V) 
 

#OPTION1:stopifthepolicyisunchanged 

afteranimprovementstepif(new_policy ==policy).all(): 

break; 
 

#OPTION2:stopifthevaluefunctionestimatesforsuccessivepolicieshasconverged#ifnp.ma

x(abs(policy_evaluation(env,policy) -policy_evaluation(env,new_policy)))< 

theta*1e2: 

# break; 
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policy=copy.copy(new_policy)r

eturnpolicy, V 

#Truncatedpolicy evaluation 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb 

deftruncated_policy_evaluation(env,policy,V,max_it=1,gamma=1):nu

m_it=0 

while num_it < 

max_it:forsinrange(en

v.nS): 

v =0 

q=q_from_v(env,V, s,gamma) 

fora,action_probinenumerate(policy[s]):v

+=action_prob * q[a] 

V[s] = 

vnum_it+=1 

returnV 

#Truncated policy iteration 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb 

def truncated_policy_iteration(env, max_it=1, gamma=1, theta=1e-

8):V=np.zeros(env.nS) 

policy=np.zeros([env.nS,env.nA])/env.nAwh

ileTrue: 

policy=policy_improvement(env,V)o

ld_V =copy.copy(V) 

V=truncated_policy_evaluation(env,policy,V,max_it,gamma)ifm

ax(abs(V-old_V))<theta: 

break;retu

rnpolicy,V 

#Valueiteration 

# https://github.com/xadahiya/frozen-lake-dp-

rl/blob/master/Dynamic_Programming_Solution.ipynb

defvalue_iteration(env,gamma=1,theta=1e-8): 

V=np.zeros(env.nS)

whileTrue: 

delta=0 

for s in 

range(env.nS):v=V[

s] 

V[s]=max(q_from_v(env,V,s,gamma))del

ta=max(delta,abs(V[s]-v)) 

ifdelta<theta:b

reak 

policy=policy_improvement(env,V,gamma)re

turnpolicy, V 

# Get an action (0:Left, 1:Down, 2:Right, 

3:Up)defget_action(model, state): 
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returnnp.random.choice(range(4),p=model[state])#

Saveamodel 

defsave_model(bundle:(),type:str): 

withopen('models\\frozen_lake' 

+type+'.adp','wb')asfp:pickle.dump(bundle, fp) 

#Load amodel 

def load_model(type:str) -> 

():if(os.path.isfile('models\\frozen_lake'+type+'.adp')==True): 

withopen('models\\frozen_lake'+type+'.adp','rb')asfp:returnpi

ckle.load(fp) 

else: 

return(None,None) 

# The main entry point for this 

moduledefmain(): 

#Createanenvironment 

env=gym.make('FrozenLake8x8-

v0',is_slippery=True)#Print information about the 

problem 

print('---FrozenLake ---') 

print('Observationspace:{0}'.format(env.observation_space))p

rint('Actionspace: {0}'.format(env.action_space)) 

print() 

#Printone-

stepdynamics(probability,next_state,reward,done)print('---One-

step dynamics') 

print(env.P[1][0])

print() 

# (1) Random 

policy#model,V=load_mode

l('1') 

model=np.ones([env.nS,env.nA])/env.nAV

=policy_evaluation(env, model) 

print('OptimalPolicy(LEFT=0,DOWN =1,RIGHT=2, 

UP=3):')print(model,'\n') 

plot_values(V)save_model(

(model,V),'1')#(2)Policy 

iteration 

##model, V = 

load_model('2')#model,V=policy

_iteration(env) 

#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP 

=3):')#print(model,'\n') 

#plot_values(V)#save_model

((model,V),'2') 

#(3)Truncatedpolicyiteration##

model, V =load_model('3') 

#model, V = truncated_policy_iteration(env, 

max_it=2)#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP 
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=3):')#print(model,'\n') 

#plot_values(V) 
 

#save_model((model, V), 

'3')#(4)Valueiteration##mode

l,V=load_model('4') 

#model,V=value_iteration(env) 

#print('OptimalPolicy(LEFT=0, DOWN=1,RIGHT=2,UP 

=3):')#print(model,'\n') 

#plot_values(V)#save_mode

l((model,V),'4')#Variables 

episodes=10 

timesteps=200 

total_score=0#L

oopepisodes 

forepisodein range(episodes): 

# Start episode and get initial 

observationstate=env.reset() 

#Resetscores

core=0 

#Loop timesteps 

fort inrange(timesteps): 

#Getanaction(0:Left,1:Down,2:Right,3:Up)acti

on=get_action(model, state) 
 

#Performastep 

# Observation (position, reward: 0/1, done: True/False, info: 

Probability)state,reward, done, info =env.step(action) 

# Update 

scorescore+=re

ward 

total_score+=reward 

#Checkifwearedone(gameover)ifdo

ne: 

#Render themap 

print('--- Episode {} ---

'.format(episode+1))env.render(mode='hum

an') 

print('Score:{0},Timesteps:{1}'.format(score,t+1))pr

int() 

break 
 

# Close the 

environmentenv.close() 

#Print thescore 

print('---Evaluation---') 

print ('Score: {0} / {1}'.format(total_score, 

episodes))print() 
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#Tell python torunmain method 

ifname =="main":main() 
 

output: 
 

RandomPolicy 

---FrozenLake--- 

Observationspace:Discrete(64)

Actionspace: Discrete(4) 

---One-stepdynamics 

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False), 

(0.3333333333333333,9,0.0,False)] 

OptimalPolicy(LEFT=0,DOWN=1,RIGHT= 

2,UP=3):[[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.250.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.250.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 
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[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.250.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25]] 

---Episode1---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:0.0,Timesteps:10 

---Episode2---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFF 
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FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG 

Score:0.0,Timesteps:75 

---Episode3---

(Up)SFFFFFFF

FFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFFF

HHFFFHFFHF

FHFHFFFFHF

FFG 

Score:0.0,Timesteps:28 

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:0.0,Timesteps:20 

---Episode5---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:0.0,Timesteps:8 

---Episode6---

(Left)SFFFFFF

FFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHF 
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FHFFHFHF

FFFHFFFG 

Score:0.0,Timesteps:51 

---Episode7---

(Up)SFFFFFFF

FFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFFF

HHFFFHFFHF

FHFHFFFFHF

FFG 

Score:0.0,Timesteps:19 

---Episode8---

(Down)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:0.0,Timesteps:26 

---Episode9---

(Left)SFFFFFF

FFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHFFH

FFHFHFFFFH

FFFG 

Score:0.0,Timesteps:24 

---Episode10---

(Down)SFFFFF

FFFFFFFFFFFF

FHFFFFFFFFF

HFFFFFHFFFF

FHHFFFHFFHF

FHFHFFFFHFF

FG 
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Score:0.0,Timesteps:31 

---Evaluation---

Score:0.0 /10 
 

Output: 
 

PolicyIteration 

---FrozenLake--- 

Observationspace:Discrete(64)

Actionspace: Discrete(4) 

---One-stepdynamics 

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False), 

(0.3333333333333333,9,0.0,False)] 

OptimalPolicy(LEFT =0, DOWN=1,RIGHT=2,UP =3):[[0. 

0.50.50.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.1.0.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0. 0. 1.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0.1.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0.1.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[0. 0.50.0.5 ] 

[1. 0.0.0.  ] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[0.0.1.0.] 
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[1.0.0.0.] 

[0.0.0.1.] 

[0.50. 0.0.5 ] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[0.1.0.0.] 

[0.0.0.1.] 

[0.0.1.0.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0. 0.50.5  0.  ] 

[0.0.0.1.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.0.5  0.5  0.] 

[0.50. 0. 0.5 ] 

[0.250.25 0.25 0.25] 

[0.50.0.50.] 

[0.250.25 0.25 0.25] 

 

 

 

5] 

 

 

[0.250.25 0.25 0.25]] 

---Episode1---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:36 

---Episode2---

(Right)SFFFFF

FF 

[0. 0. 1. 0. ] 

[1. 0. 0. 0. ] 

[0. 1. 0. 0. ] 
[1. 0. 0. 0. ] 

[0.25 
[0. 

0.250.250.2 
0.50.5  0.  ] 

[0. 0. 1.0.  ] 
[0. 1. 0.0.  ] 
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FFFFFFFFF

FFHFFFFF

FFFFHFFF

FFHFFFFF

HHFFFHFF

HFFHFHFF

FFHFFFG 

Score:1.0,Timesteps:169 

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:113 

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:94 

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:66 

---Episode6---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFF 
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FFFFFHFF

FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG 

Score:1.0,Timesteps:111 

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:132 

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:40 

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:111 

---Episode10---

(Right)SFFFFFF

FFFFFFFFFFFF

HFFFFFFFFFH

FFFFFHFFFF 
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FHHFFFHF

FHFFHFHF

FFFHFFFG 

Score:1.0,Timesteps:116 

---Evaluation---

Score:10.0/ 10 
 

 

TruncatedPolicyIteration 

---FrozenLake--- 

Observationspace:Discrete(64)

Actionspace: Discrete(4) 

---One-stepdynamics 

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False), 

(0.3333333333333333,9,0.0,False)] 

OptimalPolicy(LEFT =0, DOWN=1, RIGHT=2,UP= 3): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25] 
[0. 0. 1. 0. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 1. 0. ] 

[1. 0. 0. 0. ] 

[1. 0. 0. 0. ] 
[1. 0. 0. 0. ] 
[0. 0.50. 0.5 ] 

[1. 0.0. 0.] 

[0.250.25 0.25 0.25] 

[[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 1. 0. ] 

[1. 0. 0. 0. ] 

[1. 0. 0. 0. ] 

[1. 
[0.25 

0. 
0.2 

0. 
5 

0.] 
0.25 0. 

 



49 
 

[0.0. 1. 0.] 

[0.0. 1. 0.] 

[1.0. 0. 0.] 

[0.0. 0. 1.] 

[0.50. 0. 0.5 ] 

[0.250.25 0.25 0.25] 

[0. 0. 1. 0. ] 
[0. 1. 0. 0. ] 

[0. 0. 0. 1. ] 

[0. 0. 1. 0. ] 
[1. 0. 0. 0. ] 

[0.250.25 0.25 0.25] 
[0.250.25 0.25 0.25] 
[0. 0.50.5  0.  ] 

[0. 0. 0.1.  ] 
[1. 0. 0.0.  ] 

[0.250.25 0.25 0.25] 
[0. 0.1.0.  ] 
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(Right)SF

FFFFFFFFF

FFFFFFFF

HFFFFFFF

FFHFFFFF

HFFFFFHH

FFFHFFHF

FHFHFFFF

HFFFG 

Score:1.0,Timesteps:97 

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:127 

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:113 

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:44 

---Episode6---

(Right)SFFFFF

FF 
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FFFFFFFFF

FFHFFFFF

FFFFHFFF

FFHFFFFF

HHFFFHFF

HFFHFHFF

FFHFFFG 

Score:1.0,Timesteps:166 

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:42 

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:170 

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:75 

---Episode10---

(Right)SFFFFFF

FFFFFFFFFFFF

HFFFF 
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FFFFFHFF

FFFHFFFF

FHHFFFHF

FHFFHFHF

FFFHFFFG 

Score:1.0,Timesteps:57 

---Evaluation---

Score:10.0/ 10 
 

 

ValueIteration 

---FrozenLake--- 

Observationspace:Discrete(64)

Actionspace: Discrete(4) 

---One-stepdynamics 

[(0.3333333333333333,1,0.0,False),(0.3333333333333333,0,0.0,False), 

(0.3333333333333333,9,0.0,False)] 

OptimalPolicy(LEFT =0, DOWN=1, RIGHT=2,UP= 3): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25] 

[0.0.1.0.] 

[0.0.0.1.] 

[0.0.0.1.] 

[0.0.1.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[1.0.0.0.] 

[0. 0.50.0.5 ] 

[[0. 1. 0. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 1. 0. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 0. 1. ] 

[0. 0. 1. 0. ] 

[1. 0. 0. 0. ] 

[1. 0. 0. 0. ] 

[1. 
[0.25 

0. 
0.2 

0. 
5 

0.] 
0.25 0. 
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[1. 0.0.0.  ] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[0.0.1.0.] 

[1.0.0.0.] 

[0.0.0.1.] 

[0.50. 0.0.5 ] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[0.1.0.0.] 

[0.0.0.1.] 

[0.0.1.0.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.250.25 0.25 0.25] 

[0. 0.50.5  0.  ] 

[0.0. 0. 1.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.0.1.0.] 

[1.0.0.0.] 

[0.250.25 0.25 0.25] 

[0.0.5  0.5  0.] 

[0.50. 0. 0.5 ] 

[0.250.25 0.25 0.25] 

[0.50.0.50.] 

[0.250.25 0.25 0.25] 

 

 

 

5] 

 

 

[0.250.25 0.25 0.25]] 

---Episode1---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

[0. 0. 1. 0. ] 

[1. 0. 0. 0. ] 

[0. 1. 0. 0. ] 
[1. 0. 0. 0. ] 

[0.25 
[0. 

0.250.250.2 
0.50.5  0.  ] 

[0. 0. 1.0.  ] 
[0. 1. 0.0.  ] 
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Score:1.0,Timesteps:96 

---Episode2---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:116 

---Episode3---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:188 

---Episode4---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:124 

---Episode5---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:0.0,Timesteps:200 

---Episode 6--- 
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(Right)SF

FFFFFFFFF

FFFFFFFF

HFFFFFFF

FFHFFFFF

HFFFFFHH

FFFHFFHF

FHFHFFFF

HFFFG 

Score:1.0,Timesteps:71 

---Episode7---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:90 

---Episode8---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:102 

---Episode9---

(Right)SFFFFF

FFFFFFFFFFF

FFHFFFFFFFF

FHFFFFFHFFF

FFHHFFFHFF

HFFHFHFFFF

HFFFG 

Score:1.0,Timesteps:52 

---Episode10---

(Right)SFFFFFF 
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10 .Write a program to implement active dynamic programming. 

 

 
import numpy as np 

 

# Define the environment 

num_states = 5 

num_actions = 2 

gamma = 0.9  # Discount factor 

 

# Initialize value function 

V = np.zeros(num_states) 

 

# Define the reward matrix 

rewards = np.array([[0, -1], 

                    [-1, 1], 

                    [0, -1], 

                    [0, 1], 

                    [-1, 0]]) 

 

# Define the transition matrix 

transitions = np.array([[1, 2], 

                        [0, 3], 

                        [3, 4], 

                        [4, 0], 

                        [2, 1]]) 

 

# Active dynamic programming algorithm (Policy Evaluation) 

num_iterations = 100 

 

for iteration in range(num_iterations): 

    for state in range(num_states): 

        value_sum = 0 

        for action in range(num_actions): 

            next_state = transitions[state, action] 

            reward = rewards[state, action] 

            value_sum += (1 / num_actions) * (reward + gamma * V[next_state]) 

        V[state] = value_sum 

 

# Print the learned value function 

print("Learned Value Function:") 

print(V) 

 

 

output: 
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11. Write a program to implement Q learning. 
 

 

Scenario–RobotsinaWarehouse 

Agrowinge-commercecompany isbuildinganew 

warehouse,andthecompanywouldlikeallofthepicking operationsin the 

newwarehousetobeperformed by warehouserobots. 
 

In the context of e-commerce warehousing, “picking” is the task of gathering individual 

itemsfromvarious locations inthe warehousein order tofulfill customer orders. 

After picking items from the shelves, the robots must bring the items to a specific location 

withinthewarehousewheretheitems can bepackagedfor shipping. 
 

Inordertoensuremaximum efficiencyandproductivity,therobotswill needtolearntheshortestpath 

between the item packaging area and all other locations within the warehouse where 

therobotsareallowed to travel. 
 

WewilluseQ-learningtoaccomplish thistask! 

 

import numpy as np 

 

# Define the environment 

num_states = 5 

num_actions = 2 

gamma = 0.9  # Discount factor 

 

# Initialize Q-values 

Q = np.zeros((num_states, num_actions)) 

 

# Define the reward matrix 

rewards = np.array([[0, -1], 

                    [-1, 1], 

                    [0, -1], 

                    [0, 1], 

                    [-1, 0]]) 

 

# Define the transition matrix 

transitions = np.array([[1, 2], 

                        [0, 3], 

                        [3, 4], 
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                        [4, 0], 

                        [2, 1]]) 

 

# Q-learning parameters 

learning_rate = 0.1 

num_episodes = 1000 

 

# Q-learning algorithm 

for episode in range(num_episodes): 

    state = np.random.randint(0, num_states)  # Start in a random state 

 

    while True: 

        action = np.argmax(Q[state, :]) if np.random.rand() < 0.9 else np.random.randint(0, 

num_actions) 

 

        next_state = transitions[state, action] 

        reward = rewards[state, action] 

 

        Q[state, action] += learning_rate * (reward + gamma * np.max(Q[next_state, :]) - Q[state, 

action]) 

 

        state = next_state 

 

        if state == 3:  # Reached the goal state 

            break 

 

# Print the learned Q-values 

print("Learned Q-values:") 

print(Q) 

output: 
 

Learned Q-values: 

[[6.05065624 3.21662706] 

 [3.91063512 6.75111902] 

 [5.73632427 2.32665716] 

 [2.44769353 6.39962286] 

 [0.84239431 6.044576  ]] 
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12. Artificialintelligencetest:a casestudyofintelligentvehicles. 
 

 

12.Artificialintelligence test:acasestudyofintelligentvehicles 
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Abstract: 

To meet the urgent requirement of reliable artificial intelligence applications, we discuss the 

tightlink between artificial intelligence and intelligence test in this paper. We highlight the role 

oftasks in intelligence test for all kinds of artificial intelligence. We explain the necessity 

anddifficulty of describing tasks for intelligence test, checking all the tasks that may encounter 

inintelligence test, designing simulation-based test, and setting appropriate test 

performanceevaluation indices. As an example, we present how to design reliable intelligence 

test forintelligentvehicles. Finally,wediscussthefuture research directionsof intelligencetest. 

Introduction: 

Artificial intelligence (AI) usually refers to intelligence exhibited by machines. Nowadays, 

AIhas transformed our lives in many aspects, from semi-autonomous cars on the roads to 

roboticvacuumsinour homes.With nodoubts, AIwill continueto invadeeveryareaofour 

lives,fromhealthcareto education, entertainmentto security, in the next20years. 

To answer such questions, we need to rethink what artificial intelligence is. Clearly, 

thedefinitiongivenat thebeginning ofthis paperis notprecise. Amorerigorousdefinition 

canbegiven as “Artificial intelligence is the intelligence (that is similar to or the same kind as 

humanintelligence)exhibited bymachines (in thesame task)”. 

We can see that this new definition reveals the tight link between artificial intelligence 

andintelligence test. If and only if a machine finishes a set of specially designed tasks, we can 

saythat this machine exhibits intelligence as human. This new definition is similar to 

Minsky’sdefinition: AI is “the science of making machines capable of performing tasks that 

would requireintelligenceifdoneby[humans]”(Minsky1968). 

Thedifferenceisthatourdefinitionfocuses onthe result (performing tasks); while Minsky’s 

definition highlights the cause (the requiredintelligence). This definition belongs to the so-called 

behavior type AI definition proposed in(Russelland Norvig2010). 

Moreover, the choice of the designed tasks characterizes the kind of intelligence that 

thismachine can have. Two sets of tasks may have no or few overlaps so that we cannot 

simplydeterminewhichoneis moredifficult.For example,anilliterate 

humanmaybeadriverandawell-educatedblinded human may not be able to drive. 

Turing is the first researcher who realized the importance of intelligence test for 

developingartificial intelligence (Turing 1950). He proposed a test in which a human evaluator 

would judgenatural language conversations between a human and a machine designed to 

generate human-likeresponses. If the evaluator cannot reliably distinguish the machine from the 

human, the machineissaid to havefinished thetask and passed the test. 

However, Turing test has several shortcomings and cannot be directly applied in many 

otherapplications which require reliable intelligence test for machines (Levesque 2014, 

2017;Ackerman 2014; Schoenick et al. 2017). One example is intelligent vehicles that draw 

greatattention from researchers, automobile manufacturers and the public in the last 10 years (Li 

andWang 2007; Eskandarian 2012). In order to solve this problem, some initial attempts had 

beencarried out recently (Broggi et al. 2013, 2015; Huang et al. 2014; Wagner and Koopman 

2015; Liet al. 2017; Koopman and Wagner 2017; Watzenig and Horn 2017a, b; Zhao et al. 

2017), butnone of them give a clear portrait of the difficulties of intelligence test and explain the 

origins ofthesedifficulties. 

Facing such a predicament, some researchers claimed that machine-learning based autonomy 

isbrittle and lacks ‘legibility’. In contrast, more researchers believed that the field of autonomy 

isundergoingamachinelearning revolution. Theythought thattheright timehas comeandwe 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR66
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR76
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR89
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR52
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR53
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR1
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR79
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR54
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR23
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR8
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR9
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR38
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR93
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR43
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR100
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR101
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR103
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shouldcombineadvancesinintelligentmachinelearningwithintelligentmachinetestingofempiri

calautonomy applications. 
 

Noticing that testing of intelligence is attracting more interests in recent studies, we survey 

thestate-of-the-art achievements in this field in this paper. We account for the difficulties 

ofintelligence test, highlight the role of tasks in intelligence test for all kinds of 

artificialintelligence, and discuss how to design reliable intelligence test for intelligent vehicles. 

We willnot discuss the so-called strong (or hard) artificial intelligence which requires an 

intelligentmachine to have an artificial general (full) intelligence and exhibit behavior as flexible 

ashumans do (Ohlsson et al. 2017). Instead, we will focus on intelligence test for weak (or 

soft)artificialintelligencewhichrequiresanintelligentmachinetosolvespecific 

problemsashumanswould do (Newell and Simon 1976; Kurzweil 2005). Furthermore, the recent 

progress inintelligent vehicles indicates that appropriate testing methods could help significantly 

improvetheefficiencyofintelligencetestandthusincrease thereliability ofsomeintelligentmachines. 

Allthepromising achievementsurgeusto putmoreeffortsintothis 

researchfield.Thevalidation oftasks: 

The above assumption naturally leads to the second difficulty of intelligence test: How 

toguarantee that the machine acts accordingly for all the tasks that may encounter in a 

scenario?In general, we could view task validation as a decision problem that has been studied 

incomputability (complexity) theory (Bradley and Manna 2007; Ding et al. 2013; Kroening 

andStrichman 2016). The input of the machine is the setting of tasks. If the machine passes a 

task,we assume it outputs “yes”; otherwise it outputs “no”. We hope that the machine outputs 

“yes”forallpossible inputs. 

The complexity of decision problem varies significantly. Though few theoretical analysis 

hadbeen made for intelligence test, we can easily find that some tasks are at least as hard as 

thenondeterministic polynomial time (NP) decision problems (Karp 1972). Till now, we still do 

nothave the ranking standard to evaluate the complexity level of special kinds of 

artificialintelligence. We believe more and more research interests will be attracted to such a 

field in thenearfuture. 

For some relatively simple intelligence tests, if the scenario can be described in terms of 

discretevariables, we enumerate all the tasks that may occur and validate the performance of 

machine ineach possible task. This is often troublesome and time-consuming, due to the 

famouscombinatorial explosion problem. For example, a brute force validation reported in 

(Lamb 2016)had generated a 200-terabyte proof. If the scenario is described in terms of 

continuous variables,things may become worse, since we cannot enumerate all the combinations 

of variables due totheircontinuity. 

One widely-used strategy to handle such problems is to sample the countless combinations 

ofvariables and just check the performance of the machine within these limited sampled tasks. 

Ifthese representative test samples are appropriately selected, the machine which has finished 

allthe sampled tasks is expected to behave well for all the remaining tasks, since the capability 

ofthe machine is built to be generalizable. For example, AlphaGo does not enumerate all 

thebranchesofGogame,if weviewallthedecisionspaceof Gogame asadecisiontree.Instead,itsbuild-

in policy-network helps to filter many branches of the Go game tree and just sample a 

fewnodesofthis treeto trainthe machine(Silver etal. 2016,2017b; HeuleandKullmann 2017). 

Competition between AlphaGo and human masters show that the policy-network based 

samplingstrategygenerallyworkswell.However,AlphaGostilllostonegametoLeeSedol,due to 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR69
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR68
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR48
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR7
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR21
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR44
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR41
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR49
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR80
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR46
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incompletetrainingsamples in2016.ThedesignersofAlphaGo usedmore samples 

toteachthemachineto fix this problem and wonall the official 60 games in 2017. 

The sampling process can be guided by deterministic rules, or randomly data-driven, or 

evenmixed. For example, researchers had proved that solving the Sudoku minimum number of 

cluesproblem is 16 via hitting set enumeration (Mcguire et al. 2014). Differently, at least 

partiallyrandomly, data-driven adversarial decision-exploration and self-playing help build 

AlphaGofroma zero-knowledgebeginnerof Go gametoasuper Go master. 

It should be pointed out that gaming is found to be a very effective task exploration tool 

whichprovides a good way to find the new samples for continuous learning and testing. 

Interestingly,Turing may be the first one to realize the power of gaming in artificial 

intelligenceimplementation and testing (Turing 1950). The emerging Generative Adversarial 

Nets (GAN)(Goodfellow et al. 2014) and the recently proposed parallel learning framework 

(Li et al. 2017)canall beviewed asapplicationsof gaming based(adversarial) learning. 

For some artificial intelligence applications, we will require the machine to pass all 

therepresentative tasks that will cover the whole task space. For example, we aim to test 

everypossible extreme task an intelligent vehicle may encounter in practice (Zheng et al. 2004; 

Li etal. 2012,2017; Huang et al. 2014; Wagner and Koopman 2015; Watzenig and Horn 2017a, 

b;Zhao et al. 2017), so as to avoid any severe accidents (A Tragic Loss 2016). However, no 

onecan guarantee that AlphaGo will not lose a game anymore (Wang 2016a,b). How many 

sampletasksthat areneededremains to befathomed. 

Thedesignofsimulation-basedtest 

The desire to sample enough tasks forces us to resort to simulation-based intelligence test, 

sincethe time and financial costs of practical intelligence tests are often too high to afford. This 

leadsto the third difficulty of intelligence test: How to make the simulation-based test as “real” 

aspossible? 

We could roughly categorize the simulating objects into three kinds: natural objects, man-

madeobjects and human ourselves. Man-made objects are relatively easy to simulate because 

weusually know the exact math or physical disciplines that govern the behaviors of these 

objects.Some natural objects are difficult to simulate since they are much more complex to 

model. Weusually introduce certain simplification and just reproduce the major features of these 

objects.For example, we assume that the arriving rate of vehicles follows certain distributions to 

test theperformanceof intelligenttraffic controlsystems (Tonget al.2015; Liet al.2016a,b). 

To mimic human behaviors is difficult. Actually, we meet a causal loop here: to test whether 

amachine behaves like a human, we need to set up simulation-based test; and to better 

simulatehuman that may interact with the machine, we need to well describe and simulate 

behaviors ofhuman. This again requires us to judge whether the machine behaves like a human. 

The onlypossible solution to this dilemma is to build a spiral escalation process: the simulation 

willincreaseourknowledgeabouthowtodescribeandsimulatebehaviorsofhuman,andmeanwhile,the 

gained knowledge helps better simulate human behaviors (Wang et al. 2016a; Li et al. 

2017).Thesetting of performanceindices 

Inmany applications,wehavedifferentgoalsofusingintelligentmachines.Thisleadstothefourth 

difficulty of intelligence test: How to establish the appropriate test 

performanceevaluationindices for tasks? 

The first kind of performance indices is to require the machine to behave like a human. A 

simpleyet effective is to first observe how human operate in a certain task and then set up a 

criterion tomeasurehow 

closeartificialintelligentmachineoperationsdifferfromhumanoperations(Argall 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR65
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR89
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR31
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR104
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR55
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR38
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https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR88
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR56
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR57
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https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR58
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etal.2009;Bagnell 2015;Kuefler etal.2017).Therefore,theproblemistransferredintofindingan 

appropriate criterion that is able to robustly and smartly distinguish between intelligentmachine 

operations and human operations, based on limited samples. Many researchers 

againresortedtotheemerging GenerativeAdversarialNets(GAN)(Ho and Ermon2017;Merelet 

al. 2017), since we do not need to provide explicit rules to measure the difference. The 

implicit(dis)similarity between man-made and machine-made data will be automatically 

extracted andcomparedwhenGANiscorrectlyused.However, 

wehavetoadmitthat,forsomeapplications,westill do not know how to set 

anappropriatequantitative criteria. 

The second kind of performance indices is to reach the best performance. For example, in 

allchessgames, weaim tobuild themachinethat canbeat alltheotheropponentsratherthanmakeit 

play like a human player. It is relatively easy to set the corresponding performance indices 

forsuchsingle-objectiveapplications. 

Unlike chess games in which players only aim to win, many intelligent applications have multi-

objectives. For example, intelligent vehicles consider driving safety, travel speed, 

fuelconsumption, and some other issues. Because different performance indices may lead to 

quitedifferent implementations of intelligent machines, we should be very careful to set 

appropriateperformanceindices to balance different objectives. 

In 2016–2017 Intelligent Vehicle Future Challenge hold in Changshu city of China, the 

timeusedbyaparticipatingvehicletopassthegiven10taskswastakenasone ofthestandardsofgrading 

for intelligence level, since it is a nice synthetic criterion. Any traffic violation (e.g.running 

through a red light) will lead to a deduction of the final score. It is interesting thatchallenge 

participators have noticeably different preferences of the deduction values for 

eachtask.Thejudges had to holda 3-h meeting to finallysettle down the scoring rules. 

Moreover,whenthepersonalfeelingisconsidered,itbecomesevenhardertosettheappropriateperform

ance indices. For example, personal preferences of driving may vary significantly fromperson to 

person (Classen et al. 2011; Butakov and Ioannou 2015; Lefèvre et al. 2015). To thebest of our 

knowledge, few studies had established an accurate, flexible, and adjustable standardofgrading 

fordifferent personalizing aspects of driving. 

Intelligencetestforintelligentvehicles 
 

Since it is impossible to summarize all the AI applications, we take intelligent vehicles as 

anexampletopresent aframeworkofintelligencetestandreview 

thelatestadvanceinthisfield.Thedefinition and generation ofintelligencetest tasks forvehicles 

Most previous tests of intelligent vehicles did not provide a clear definition of 

drivingintelligence. We can roughly categorize them into two kinds: scenario-based 

tests andfunctionality-basedtests. 

Scenario-based tests, such as DARPA Grand Challenge and DARPA Urban Challenge, 

justrequire an autonomous vehicle to pass a special region safely within a limited time 

(DARPAGrandChallengeandDARPAUrbanChallenge2004–

2007;Buehleretal.2009;Campbelletal. 2010). The number and the kind of traffic participants are 

not clearly defined. The scene 

andthedrivingenvironmentisnotexplicitlygiven,either.Thisismainlybecauseresearcherscannotenu

merate all the possiblesettings of driving situations. 

Functionality-based (ability-based) tests examine three components of driving 

intelligence:sensing/recognition functionality, decision functionality according to the recognized 

information,and action functionality with respect to the decision (Li et al. 2012, 2016a, b; Huang 

et al. 2014;Hernández-Orallo 2017). Special detailed functions (e.g., traffic sign recognition) will 

be furthertestedwithspeciallydesignedtasks (GTSDB 2014).However,existingfunctionality-based 
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are carried out separately and independently, which makes it impossible to get a 

comprehensiveunderstandingoftheintelligencelevel ofvehiclesandthusdegrades 

thereliabilityofsuchtests. 

Recently,asemantic relationdiagramfordrivingintelligencewasproposedin(Li et 

al. 2016a,b) to better define the intelligence of vehicles. Task atoms are on one side of 

thissemantic relation diagram, while function atoms are on the other side of this semantic 

relationdiagram.Thelinksbetweenthesetwosidesdenotethatitusuallyrequiresanautonomousvehiclet

o perform several function atoms to fulfill any task atom. Moreover, various combinations oftask 

atoms can be grouped into different kinds of driving scenarios. Meanwhile, analogous tohuman 

drivers, the function atoms can also be grouped into three major 

categories:sensing/recognitionfunctionality,decisionfunctionality,andactionfunctionality;seeFig.1

. 

Fig. 1 

 

An illustration of the semantic relation diagram for driving intelligence of autonomous 

vehiclesWe can see that scenario-based tests only emphasize the left part of this semantic 

relationdiagram; while functionality-based (ability-based) tests only emphasize the right part of 

it. So,this semantic relation diagram actually integrates the two major kinds of intelligent 

vehicletesting approaches. Moreover, if we transverse from the right side of the semantic 

relationdiagram to the left side of the semantic diagram, we will generate the desired test task 

that isneededforsomespecialfunctions(abilities).So, 

thissemanticrelationdiagramnotonlydefinestheintelligencerequiredto drive avehiclebutalso gives 

theway oftest task generation. 

Based on this semantic relation diagram definition, a detailed test design can be simplified as 

aspecial temporal and spatial arrangement of task atoms. As shown in Fig. 2, each task can 

betaken as a rectangle. The left vertical boundary of this rectangle denotes the time that a 

taskstarts,and;theright verticalboundarydefines the maximalallowable 

timewhenataskmustbefinished. The left horizontal boundary of this rectangle denotes the 

position that a task starts,and; the right horizontal boundary defines the maximally allowable 

position where a task mustbe finished. Since a vehicle may need to process and finish several 

task atoms simultaneously,thetemporal-spatial rangeof atask may beoverlapped withthoseof 

othertasks. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR56
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR57
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig1
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig1
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig2
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Fig. 2 
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An illustration of transforming a typical driving scenario into the corresponding temporal-

spatialplot of the assigned tasks and generating sample instances of the related objects in 

simulation,accordingto theassignedtemporal-spatial positions of tasks 

The number of task atoms, the difficulties of task atoms, and the numbers of concurrent 

taskatoms all influence the difficulty of a particular task. Varying all these factors, we can 

sampleandtest tasks with different difficulty levels;seeFig.2. 

Itisinterestingtocomparetheabovetaskdefinitionandgenerationprocesswiththeso-calledV-model 

which is frequently used for conventional automobile software development. V-modelmeans 

Verification and Validation model. As shown in the right part of Fig. 3, it assumes thattestingof 

the systemis planned inparallel with acorresponding phaseofdevelopment. 

Fig. 3 

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig2
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig3
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Anillustration ofthe V-model 

The first phase of the V-model is the requirement phase which creates a system testing 

planbeforedevelopmentstarts.Thecorrespondingtestplanfocusesonmeetingthefunctionalitysp

ecifiedin therequirements gathering. 

The second phase of the V-model is the high-level design phase which characterizes 

systemarchitecture and design, providing an overview of the solution. Correspondingly, an 

integrationtestplanis createdinthisphaseaswell inordertotestthepieces 

ofthesoftwaresystemsabilitytowork together. 

The third phase of the V-model is the low-level design phase which designs the actual 

softwarecomponents, defines the operation rules for each component of the system, and sets 

therelationshipbetweeneachdesignedclasses.Correspondingly,componenttestsarecreatedinthispha

se. 

The fourth phase of the V-model is the module design phase which further decomposes 

thecomponents into a number of software modules that can be freely combined. The bottom 

phaseof the V-model is the coding phase where all design is converted into the code by 

developers.Thedependencesofdifferentmodulesareminimized.Correspondingly,unittestingisperfo

rmedbythe developers on theobtained codeto checktheperformanceof modules. 

Ifwecombinethe aforementionedtesttasksgeneration methodwiththeV-model,wecangetaΛΛ–

V-model asshown in Fig. 4. Sincethe definition oftheup-level“scenario”is usually 

much more abstract than the definition of the low-level “task” and “function”, we use the 

Greeksymbol ΛΛ to represent this top-down design. The phase-by-phase specification in the V-

modelis right a transverse from the left side of the semantic relation diagram to the right side of 

thesemanticdiagram. 

 

 

 

Fig. 4 

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig4
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AnillustrationoftheΛΛ–V-model 

Theframeworkof intelligencetestingsystemforvehicles 

Whentest tasksaredetermined,wewillbuild thetesting system. 

V-model is simple and easy to use for small system development where requirements can 

bestraightforwardly understood. However, test designing happens before coding in the V-

model.This makes V-model very rigid and inflexible for complex artificial intelligent 

systemdevelopment. 
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As pointed out in (Boehm 1988; Raccoon 1997; Black 2009), we should take a spiral loop to 

findmost challenging test tasks. Because learning and testing are two sides of the same coin, 

thearchitecture of such a powerful testing system should share a similar loop structure with 

somecertainpowerful artificialintelligencelearning systems. 

Let us take the recently proposed parallel learning framework (Li et al. 2017) as an example. 

Asshown in Fig. 5a, parallel learning first applies descriptive learning to create the same (kind 

of)new data. This is just as Prof. Richard Feynman had said: “What I cannot create, I do 

notunderstand.” Then, parallel learning applies prescriptive learning to make system 

evolveappropriately by special trying-and-testing and guide system with growing knowledge. 

Finally,parallel learning applies predictive learning to label data-action pair and leads the system 

toevolve in an unsupervised manner. The new action will generate new data and forms a loop 

intheend.Thesystemwillfinally mastertheknowledgeof choosingthe appropriateactionsfor allthe 

tested data. Such knowledge will be generalized to choose the actions for the untested data.Fig. 

5 

 
A comparison of a parallel learning loop (Li et al. 2017); and b testing loop for 

artificialintelligence 

Check the inner mechanism of AlphaGo, we can find that it indeed does the same thing. 

Therules of Go game is first encoded (descriptive learning). The system sets up a deep 

neuralnetworkbased policynetwork (prescriptivelearning) to learnhow tochooseamovein 

thegame 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR6
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(the action). The Monte Carlo sampling based self-playing (predictive learning) Browne et 

al.(2012)isused todeterminewhetherthemove(theaction)is correctand howtoupdate 

thepolicynetwork.Such aspiral loop makes the system become better andbetter. 

Followingasimilarlogic,anintelligentsystemforvehicleintelligencetest 

exploresthespaceofstate,policy and state transitions inaloop as illustrated in Fig.5b. 

Taskdescriptionpart solveshow togenerate new tasks fortesting.Themaingoal ofthis partisto set 

up and refine a methodology, which can guide to set up environments for the followingtests. 

For tasks in every scenario, the descriptor will break it down into several task atoms, andthen 

function atoms and functionalities. The connection between these elements will bedescribedas 

well. 

Given detailed descriptions of tasks, task sampling part will explore the policy space to 

choosechallengingtasks. There wereseveralways toreach thisgoal (Zhaoet al.2017; Evtimovet 

al.2017).However,none oftheexistingapproachesisself-motivated. 

To implement rapidly adaptive intelligence test, we consider challenging task sampling as 

adecision process which can be formalized as a 4-tuple (S,A,P,R)(S,A,P,R). The state stst in 

thisdecision process is the confidence we had on the performance of vehicle intelligence at 

time tt,andthe action atat is thetesting procedures that we chooseto updateour 

confidence.Pra(st,s′t+1)Pra(st,st+1′)denotesthe probabilitythatwechooseaspecifictaskwilllead 

to another understanding level s′s′ from state ss, and the reward rtrt gives how 

muchconfidencewegained at time tt. 

Undersuchsetting,thelong-

termunderstandingofvehicleintelligencecanbeformalizedasVπ(s)=E(∑t=0∞rt|s,π).Vπ(s)=E(∑

t=0∞rt|s,π). 

(1) 

Thegoal oftask sampling partis to findan optimal policyπ∗π∗which canmaximizethe long-

termunderstanding 
π∗=argmaxπVπ(s).π∗=argmaxπVπ(s). 

(2) 

With a detailed description of the task and sampling policy, testing (simulation) part can 

finallysolve how to label testing results by actually generate the test scenarios and see how well 

thevehicle intelligence can perform. Two kinds of relationships need to be labeled during 

thisprocedure.Oneisthe 

relationshipbetweenvehicleintelligenceanditsperformanceundercertainenvironments. The 

evaluation of vehicle intelligence is the main output we want from anintelligenttest system,and 

suchresults canhelp ussamplebetter tasksin thenext episode. 

Another is the relationship between the test and real environments. Differences of 

twoenvironments and behaviors of subjects (e.g., the characteristic of traffic situations and 

featuresofvehicledynamics)needtobe paired,sothetask description 

canbemoredetailedandrealisticin thenext loop. 

Theabove frameworkof 

intelligencetestingsystemforvehiclesisdesignedbasedonthefollowingconsiderations: 

First, we can hardly know in advance whether intelligent vehicles will behave unless we 

testthem. So, we cannot directly answer which task is most challenging. So, we need to 

graduallybuild our knowledge of testing from zero knowledge state and adopt a prescriptive 

learning style.Second, testing can actually be viewed as a self-labeling (prediction learning) 

process. Since wedo not know the outcome of a special test, we have to wait and let the results 

label whether thevehiclecan pass thetestor not. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR11
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Third, it requires huge an amount of resources and a long time to cover most of 

thefunctionalitiesthatavehicle intelligenceshouldhave.So, weneedtofind anefficientway 

tomaximizethe long-termunderstanding of vehicle intelligence. 

Wedonot restricttheimplementation detailsofsuch tasksamplingdecision problem.Wearenow 

testing whether deep reinforcement learning needs to be used. We will write a dedicatedpaperto 

report the progress in the near future. 

Paralleltestingforvehicleintelligencetest 

When the detailed task is assigned, simulation-based tests can then be applied for tests 

ofintelligent vehicles. Researchers began to show interests in accurately reproducing 

humanbehaviors(Wangetal.2017b).While,currently,mosteffortshadbeenputintogeneratingvirtuali

mage/video data as inputs of intelligent vehicles, since most information is collected by 

visualsensors(Gaidonet al. 2016; Santanaand Hotz2016; Liu et al.2017). 

Someapproachesfirstacceptedreal2Dimage/videodata,thenbuiltthecorresponding3Dobjectmodels 

in rendering engines, and finally generated 2D virtual image/video data as sensing inputsof 

intelligent vehicles (Gaidon et al. 2016; Richter et al. 2016; Greengard 2017). Some 

otherapproaches directly employed GAN to generate new virtual 2D image/video data from 

existingreal 2D image/video data (Santana and Hotz 2016; Gatys et al. 2016; Liu et al. 2017). 

The latestapproach mixed these two methods to produce more virtual data as “real” as possible 

and as“rich” aspossible(Veeravasarapuetal.2015;Wang etal. 2017a; Roset al.2016). 

In this subsection, we propose a parallel system framework that combines real-world 

andsimulation-world for vehicle intelligence test. As illustrated in Fig. 6, a vehicle intelligence 

testcan be decomposed into three parts, the environment, the test planning part, and the 

testperforming part. Following the logic we predicated in the last subsection, a parallel system 

canbebuilt by connecting thesethreeparts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 
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Ademonstrationofparallelsystemforvehicleintelligencetest 

Theloopofintelligencetestinthe parallelsystemstarts fromareal environment,whichisanarea 

withintersections,traffic signsandotherelements ofsomespecificdrivingscenarios. 

Depending on the mission, a task description, which is a directed acyclic graph (DAG) can 

firstbe initialized according to some prior knowledge. It breaks down the task into task 

atoms,function atoms, and functionalities atoms. Then, it establishes the connection between 

theseatoms. The weights of DAG are estimations of confidence gained by performing a certain 

step.Basedonthedescription,anagentwillbetrainedtoplanthebestschedule oftasks.Forexample,if 

there are two task atoms, traffic signs recognition and lane changing, the optimal agent willfind 

that, the traffic signs recognition atoms can actually be neglected, since most of 

theconfidencescanbegained byperformingthelane changingatom.Weighing theprosand consof 
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different routes in the DAG, the agent prunes some routes and picks important ones to 

perform.The most important tasks will be checked in the real environments and the less 

important oneswillbetested in simulation. 

Once the schedule is provided, a special task can be tested. Depend on the confidence of 

testaccuracyandtheimportanceof atom,wecancalculateaweightedscorebased ontheresultsinboth 

real and simulative environments. Meanwhile, data generated in the real environment willbe 

fed into the simulative environment, so the simulation can be improved continuously. Theloop 

in the real system and the artificial system is asynchronous, and multiple loops can 

beperformedin theartificial systemwhile oneloop in thereal environment. 

Comparing totraditionalsimulativeenvironments,theparallel 

systemforvehicleintelligencetesthastwomaindifferences.Firstof 

all,theparallelsystemisnotmerelyareflectionoftherealsystem, but a combination of two systems 

with equal status. Things happened in both systemswill affect each other and form a closed self-

boosting loop. Second, the parallel system is alearning system which can evolve over time. 

Several key components in the artificial system(e.g., the task sampling agent and simulative 

environment) are data-driven instead of arbitrarymodels.Such designs maketheparallel system 

moreautonomous andquantifiable. 

It should be pointed out that a prototype parallel intelligence testing system had already 

beenbuilt in Changshu city, Jiangsu Province, China and had successfully supported the 

2016 and2017IntelligentVehicle 

FutureChallenge(IVFC).AsshowninFig.7,sometestingvehiclespassed a number of relatively 

simple tasks but failed to do so when encountering the mostchallengingtask thathadbeen 

foundin virtual testsin thevirtualparallel world. 

Fig. 7 

 

AdemonstrationofusingparallelsystemtofindthemostchallengingtaskDiscus

sions 

Ethicalproblems 

Most researchers, starting from Turing, have implicitly assumed that human will do the 

rightthingstofinishthestudiedtasksandintelligent machinesshouldlearntodo thesameright thingto 

finish the studied tasks. So, we only need to check whether intelligent machines do the 

samethingsas human, during intelligencetest. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig7
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However, in some cases, even a human will feel difficult to know what should be done. 

Onefamous case is the so-called trolley problem that has mulled for about 50 years. Suppose 

arunaway trolley speeding down a track to which five people are tied. You can pull a lever 

toswitchthetrolleytoanothertracktowhichonlyonepersonistied.Wouldyousacrificetheoneperson 

to savethe other five, orlet the trolley kill thefivepeople? 

Trolley problems caused much debate that we do not want to discuss in this paper. If we think 

ofhumans as moral decision-makers and take artificial intelligent machines as moral agents 

thatactually replace our capacities, we can hardly find a commonly accepted answer (Goodall 

2014;Kumfer and Burgess 2015; Maurer et al. 2015; Thornton et al. 2017). If we assume 

thatintelligent machines reason and act just what human had told them to do, the only decision-

makers are human but not intelligent machines. In this paper, all such problems involved 

ethicaldecisionmakingarenotconsidered. As aresult,wedonotdiscusshow 

todesignanyintelligencetest tasks forethics, sinceweshould pay to Caesarwhat belongs to Caesar–

and Godwhatbelongs toGod. 

Real-timeandautomatedevaluationoftestingresults 

One major difference between Turing test and the new approach of intelligence test is 

theselectionofthejudge. Turingchosehumanto bethejudge 

toarbitratewhetheramachinehasintelligence in Turing test; while many new intelligence 

testing systems use machines toarbitrate. This is not only because we have a more clear 

description of tasks in many recentlystudied intelligence test problems, but also because a 

human is unable to accurately examinemanyresults of intelligencetest without thehelp 

ofmachines. 

Let us still use testing for intelligent vehicles as an example. To save time and money, 

severalindependenttasksofanintelligentvehicleareoften 

linkedalongaspecialpathofthevehicleandare tested sequentially in practice. For instance, a vehicle 

needs to finish 14 tasks in 2017Intelligent Vehicle Future Challenge, including: (1) make U-turn, 

(2) pass the signalized T-intersection, (3) pass the non-signalized cross-intersection, (4) pass 

other vehicles, (5) pass thetunnel in which GPS is blocked, (6) recognize the stop sign dedicated 

for vehicles and behaveappropriately,(7)passanotherstopsigndedicatedtoschoolchildren, 

(8)giveway topedestrian, 

(9) make a right-turn, (10) pass the rural road, (11) give way to bicycle, (12) pass the 

workingzone,(13)recognizethe speedlimitandbehave 

appropriately,(14)parkintotheassignedberth;seeFig.8for an illustration. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR30
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR47
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR64
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR87
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig8
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Anillustrationofdifferenttest tasksfor2017 intelligentvehicle futurechallenge 

Usually, we do not require the vehicle to stop after it passes a task. In order to achieve a real-

time and automated evaluation of the testing results for each individual task, researchers 

hadused vehicle-to-everything (V2X) communications to connect the onboard sensors and 

controlcenter, share a number of information of vehicle (e.g., position, speed, ac/deceleration 

rate) andrapidlycalculatetheperformancevaluesofeach taskbasedonthecollectedinformation.Such 

amethodreduces theburden of testingand becomes increasingly popular. 

Figure 9gives a demonstration of the evaluation system designed by Tsinghua University 

andQingdao VIPioneers company, for 2017 Intelligent Vehicle Future Challenge. The left 

screensshow the real-time trajectories of 5 vehicles that were running in the Challenge and their 

ranks.The right screens show the real-time monitoring video data collected from the cameras 

that wereinstalled inside the tested vehicles, the cameras that were installed inside the following 

arbitratorvehicles, and the roadside cameras. All the data were transferred to the testing center 

via variousways, including V2X communication, 4G wireless communication, and optical 

fibercommunication. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig9


77 
 

Fig. 9 

 
A demonstration of the real-time automated evaluation system designed for vehicle 

intelligencetestsof 2017 intelligent vehiclefuturechallenge(IVFC) 

In 2009–2015 Intelligent Vehicle Future Challenges, human judges determine how to 

evaluatethe performance of intelligent vehicles. Such manual evaluation is tedious, time-

consuming andprone to error. In Intelligent Vehicle Future Challenge 2017, most evaluations 

were done bymachines based on the measured data collected from various resources. 

Comparisons show thatthe evaluations became more accurate and much quicker. For example, 

in the previous match,human judges stared at the dashboard to check whether the tested vehicle 

is speeding. Based onthe high-resolution position information measured via BeiDou navigation 

satellite system(Wang 2016a, b), we can easily reconstruct the whole trajectory of the tested 

vehicle anddeterminewhenand wherethe vehicleis speeding. 

For another example, Fig. 10gives a demonstration of the deep learning (LeCun et al. 

2015;Goodfellowetal.2016)basedautomated 

evaluationsystemdesignedtorecognizewhetherthevehiclehadcrossed thelaneboundaries (You 

2017). This systemused YOLO(Redmonet 

al. 2016; Redmon and Farhadi 2016) to recognize the tested vehicle, based on the video 

datacollectedfromthejudgingvehiclethat followsthe testedvehicleall thewayalong.Itcan 

helpcatch each incorrect crossing of the lane boundaries during the long-time running tests 

andgreatlyrelievethe burdens of human judges. 

 

 

Fig. 10 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR94
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR95
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig10
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR50
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR32
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR102
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR72
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR71
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Ademonstrationoftheautomatedevaluation 

systemdesignedtolanedeparturewarningHuman–machineintegrated testing 

However,wedonotclaimthatweshouldremovehumanfromtestsofartificialintelligence. 

Inthecurrent stage,humanparticipates inevery aspectof artificial intelligencetests. 

First, human experts are heavily involved in the description of test tasks. Indeed, every test 

isdescribed by a certain kind of language that is established by human. Till now, we do 

notobserve any artificial intelligent machine generates its own language. The capability of 

anintelligent machine and that of the corresponding testing system is constrained by 

humandesigners,too.So,wealways resorttohumanexpertsto makesubstantive 

improvementforthedesignand tests of artificial intelligence. 

Second, human experts also help to design the most challenging tasks in many 

intelligentapplications,accordingtotheirexperience 

andintuitionthatisgainedthroughfinishingthesametasks. For example, researchers inquired human 

drivers to set up different testing levels fordifferenttasksforintelligent vehicles (Zheng 

etal.2017). 

Third, human experts usually monitor the testing process and take the final responsibility 

toguarantee that the testing results are correct. As shown in Fig. 8, the automated 

evaluationsystem designed for 2017 Intelligent Vehicle Future Challenge provides real-time 

visualizationfor human experts. This enables human experts to track the entire progress of 

testing, monitorwhether the automated evaluation system works well, and gain an intuitive 

understanding oftesting result. Such a hybrid-augmented intelligence (Zheng et al. 2017) 

setting helps combinebothhuman andmachines tobetter evaluatethe 

performanceofintelligentmachines. 

It should be pointed out that, till now, human’s intelligence levels are tested via the 

tasksdesigned by human experts (Sternberg and Davidson 1983; Sternberg 1985; Mackintosh 

2011;Rindermann et al. 2016; Ohlsson et al. 2017). Can we use some tasks that generated by 

machinesvia some technologies similar to what we had discussed above? We believe this 

interestingquestionwill attract moreattention in thenear future. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR105
https://link.springer.com/article/10.1007/s10462-018-9631-5#Fig8
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR105
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR85
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR84
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR63
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR74
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR69
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Testingasameasurementofintelligencelevel 

SAE International defines the six levels of driving automation, from no automation to 

fullautomation in 2016 (SAE J3016 2016). However, there is not a clear description of 

thecorresponding test tasks. So, it becomes widely accepted that testing results for 

intelligentvehicles can be viewed as a measurement of intelligence level. Only if a vehicle 

passes all thetasks that are designed for a special level of driving automation, we can claim 

that this vehiclehassuch an intelligencelevel. 

Intelligent machines are becoming smarter and smarter now. Now, intelligent machines 

hadbeaten all human players in Shogi, chess and Go games (Silver et al. 2017a, b). The AI 

‘TopGun’ beat the military’s best pilots repeatedly. It is probably safe to say that all 

artificialintelligenceresearchers 

aimtodesignandimplementsomemachinesthatbeathumanincertainkinds of tasks, since 

aeronautical engineers had shown that they can do something better thanmakingmachines fly 

so exactly likepigeons (Russell and Norvig2010). 

Maybe in the future, we should renew our definition of artificial intelligence as 

“Artificialintelligence is intelligence (that is similar to, or the same kind as, or even superior to 

humanintelligence) exhibited by machines (in the same task)”. At the current stage, human 

experts arestill the major referring standard for tests of artificial intelligence. Sometimes in the 

future, theperformancethatanintelligentmachinecouldachievewillserveasanew 

evaluatingstandardofintelligencelevelinstead. 

When we cannot enumerate all the test tasks, it becomes increasingly complex to set a 

fairmeasurement of intelligence for two different artificial machines dedicated for the same 

purpose.For example, in Go game, researchers used the Elo rating scores (Elo 1978; Coulom 

2008; Silveret al. 2017b) that were computed from evaluation games between different players, 

becauseconventional static rating systems do not consider time-varying strengths of players. 

When theinformation that we can observe from the results is limited, things become even harder. 

Asshown in the recent algorithms designed for the poker game, analyzing results indicated that 

weneed to build special algorithms to drill the useful guide so as to boost the intelligent 

machines(Moravčíketal.2017;BrownandSandholm2017).We 

believethatmoreresearcheffortswillbeput into this researchdirection. 

Explainabletestingofintelligent machines 

Itshouldbealsopointedout that,justlike Turinghad done67years ago,wefocus 

ontheoutsidebehaviors of human/machine rather than the inside mechanism that generates the 

outsidebehaviors. If a machine has passed all the tasks according to its outside behaviors, we 

admit itsintelligence in this special field. However, we usually know neither what the best way to 

finishallthesetasks is, norhow human finish thesetasks. 

Nowadays, intelligent algorithms and machines become more and more complex. Someone 

iscalling them ‘black box’, since it becomes harder to interpret what these algorithms 

andmachines are doing. However, intelligent machines coded in simple rules seem do not work 

aswell as some state-of-the-art ‘black boxes’. Actually, if we assume that the latest 

machinelearningtechnologyhas“theabilitytolearnfrom 

testingresultsandimproveitselfautomaticallywithout being explicitly programmed, we may find 

that these machines will be naturally hard tointerpret.Otherwise, we can turn them backto 

explicit codes. 

To the best of our knowledge, few studies give a widely-accepted generalizable way to 

combineinside mechanism design with outside behavior validation of artificial intelligence. We 

think thisnewdirection may bring some interestingfindings in the nearfuture. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR77
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR81
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR76
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR22
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR18
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR82
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR67
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR10
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Testingasanessentialpartofartificialintelligencesoftwaredevelopmentprocess 

Because artificial intelligence is coded and implemented on computers, we need to highlight 

theimportance of software development of artificial intelligence. The lack of reproducibility 

andreadability has already hindered the development of AI techniques, since researchers can 

hardlyrelyon animplementation that canhardly beproofedor understood tofurther their research. 

A proper design of AI development loop can help to alleviate such situation. Test-

drivendevelopment (TDD) has already been widely adopted in modern software development 

process.The basic idea of TDD is to organize the development cycle as a repetition of a very 

shortdevelopment cycle: First turn the requirements into very specific test cases, and then 

improve thesoftwareto passthetests.In suchdevelopment process,thereliabilitycan beguaranteedif 

wesetthe test properly, and the readability of software can be improved as well, since it is 

organized asthecollection ofsimple componentsto each fulfillaspecificrequirement. 

The development of AI software can be profited from such development methodology, if 

somecritic problems are solved. Despite the unclear definition of requirements which can be 

handledby the method we proposed in the last section, the major problem is the lack of testing 

anddebugging tools. Software testing had already taken an essential part of software 

development.Almost all state-of-the-art commercial software developing tools provide thorough 

support fortesting at different phases (Huizinga and Adam 2007; Ammann and Jeff 2017). 

However, mostcurrent software/toolbox for building artificial intelligence lacks convenient 

testing tools anddebuggers. We wonder software/toolbox for building artificial intelligence 

could be viewed asSoftware 2.0 (Karpathy 2017). We expect more attention could be drawn to 

this important issue.Life-longlearning and life-long testing 

Researchers are developing more and more powerful testing methods of artificial 

intelligence,just like what they had done for design methods of artificial intelligence. However, 

all thechanges take time to complete. Similar to the evolutionary history of machine learning, it 

seemsthat machine testing will take a relatively long time to become strong enough to 

characterizewhat a truly intelligent machine should be. We cannot give a precise prediction of 

the time whenan intelligent vehicle can drive in all kinds of situations. So, we borrow the term 

“life-long” fromlife-longlearning(ChenandLiu 2016)andname thisevolutionprocessas“life-

longtesting”. 

Moreover, it should be emphasized that we should always take the design and testing 

ofintelligentvehicleas awhole. Theknowledgeoftesting willbefedback tothe 

designpartofintelligent vehicle and will be used to further improve the intelligence of 

intelligent vehicles.Such a spiral loop helps make intelligent vehicle into practice in every 

automobile lab andmanufactory. 

In precision machining industry, we continuously employ low-level machines to build 

moreprecisehigh-levelmachines.About 400 years ago,wecanonlymakesome 

simplegadgets.Now,we had achieved a great success and become able to make many complex 

things like CPU andGPU. Similarly, in artificial intelligence research field, smart machines are 

used to build evensmarter machines now. Fortunately, we are now witnessing such a great 

change in artificialintelligencedevelopment. 

Testingasaneconomical opportunity 

The ongoing artificial-intelligence revolution brings changes in enormous social lives 

andeconomic opportunities (Harari 2017). Humans are pushed out of some part of the job 

market byintelligent machines (Fagnant and Kockelman 2015; Fisher et al. 2016). For example, 

someaggressiveresearchers advocatedto totallyreplacehumandrivers inthenearfuture. 

https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR39
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR2
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https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR15
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR35
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR25
https://link.springer.com/article/10.1007/s10462-018-9631-5#ref-CR26
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Meanwhile, AI generates a wide range of new jobs, including some new jobs for tests of 

AI.Using crowdsourcing(Wanget al.2016b), we canhirea numberofhumantolabel the videodata 

collected in streets and plot the bounding boxes of vehicles/pedestrians, since we needground 

truth data to train the artificial intelligent systems for environment recognition 

andautonomousdriving.Severalcompanies inChinahadhired alotofretiredpeople todosuchjobsand 

gained gigabytes of useful in return. We hope that, in the future, many people who had 

beenreplacedbyintelligent machinescould jointhebuildingprocess ofmoreintelligentmachines. 

Thisalsorequires ustobuild moreflexibleand powerfulsoftware, 

likeCompletelyAutomatedPublic Turing test to tell Computers and Humans Apart 

(CAPTCHA) (von Ahn et al. 2003;Georgeet al. 2017). 

Crowdsourcing also leads to new risks of AI developing and testing. Tencent company 

hadrecently announced a critical vulnerability of Google’s TensorFlow. Such vulnerability 

alloweshackers accessto AIcodebeingwrittenby programmers,jeopardizethetraining 

data,orconfusethe testing results (Liao 2017). So, we have to make far more efforts to make 

distributed tests ofartificialintelligenceintopractice. 

Conclusions 
 

In this paper, we discuss four major difficulties of carrying out the test of artificial 

intelligence,withaspecial emphasison theroleoftaskin intelligencetest.Wealsopresent 

ourexperiencesindesigningreliable intelligencetest for intelligent vehicles. 

We explain our design of intelligence test by analogy with the structure of machine 

learningframework. The origin of this similarity lies in the fact that learning and testing are 

indeed 

twofacesofartificialintelligence.Fromthisviewpoint,weexplainwhyaparallelsystemframeworkforv

ehicleintelligencetestis needed.Such aframework shouldhavetwoimportant features. 

First,thewholetestingshouldbe formulatedasa loopbetween threeparts: 

taskdescription,tasksampling and task testing (simulation). This formulation allows us to 

gradually build ourknowledge of testing results and automatically finds the most challenging 

tasks to test. Second,the simulation tests should be executed in a mirror system so that we can 

produce more virtualdata as “real” as possible and as “rich” as possible. This will help us reduce 

both the time andfinancialcosts of testing. 

However,theevolutionofartificialintelligenceonlyhelpstoreducehuman participation fromsome 

parts but not the core of artificial intelligence test. We still do not have an intelligentmachine 

can self-test, self-boost and upgrade without the help of human. The singularity of 

AI(Vinge1993; Kurzweil2005)is yet to come. 
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